Chapter 6

Startup Parameters

In many of the previous examples, we had to hard-wire something into the kernel mod-
ule, such asthefile namefor / pr oc files or the mgjor device number for the device so we
can havei oct | 'stoit. This goes against the grain of the Unix, and Linux, philosophy
which isto write flexible program the user can customize.

The way to tell a program, or a kernel module, something it needs before it can start
working isby command line parameters. In the case of kernel modules, wedon't get ar gc
and ar gv — instead, we get something better. We can define global variablesin the kernel
module and i nsrrod will fill them for us.

In this kernel module, we define two of them: str1 and str2. All you need to
do is compile the kernel module and then runi nsnod st r 1=xxx str2=yyy. When
i ni t_nodul e iscaled, str1 will point to the string ‘xxx’ and st r 2 to the string
yyy'.

In version 2.0 there is no type checking on these argumentst. If the first character of
strlorstr2isadigit thekernel will fill the variable with the value of the integer, rather
than a pointer to the string. If areal life situation you have to check for this.

On the other hand, in version 2.2 you use the macro MACRO_PARMto tell i nsnod that
you expect a parameters, its name and its type. This solves the type problem and allows
kernel modules to receive strings which begin with a digit, for example.

param.c

1There can't be, since under C the object file only has the location of global variables, not their type. That is
why header files are necessary

61

/* paramc
*
* Receive command |ine paraneters at nodul e installation
*/

/* Copyright (C) 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

#include <stdio.h> /* | need NULL */

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’'t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

/* Emmanuel Papirakis:

* Praneter nanmes are now (2.2) handled in a macro
* The kernel doesn’'t resolve the synbol nanes
* like it seenms to have once did.

* To pass paraneters to a nodule, you have to use a nmacro
* defined in include/linux/nodules.h (line 176).

* The macro takes two paraneters. The paranmeter’s nane and
* it'’s type. The type is a letter in double quotes.

* For exanple, "i" should be an integer and "s" shoul d

* be a string.

char *strl1, *str2

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
MODULE PARMstr1, "s");

MODULE _PARM str2, "s");

#endi f

/* Initialize the nodule - show the paraneters */
int init_nodule()
{
if (strl == NULL || str2 == NULL) {
printk("Next time, do insnmod param strl=<sonethi ng>");
printk("str2=<sonething>\n");
} else
printk("Strings:% and %\n", strl, str2);

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
printk("If you try to insnod this nodule twice,");
printk("(w thout rmmod’ing\n");

printk("it first), you mght get the wong");

printk("error message:\n");

printk("’synbol for paraneters strl not found .\n");
#endi f

return O;

/* O eanup */

voi d cl eanup_nodul e()
{

}

Chapter 7

System Calls

So far, the only thing we've done was to use well defined kernel mechanismsto register
/ proc files and device handlers. This is fine if you want to do something the kernel
programmers thought you'd want, such as write a device driver. But what if you want to
do something unusual, to change the behavior of the system in some way? Then, you're
mostly on your own.

This is where kernel programming gets dangerous. While writing the example below,
| killed the open system call. This meant | couldn’t open any files, | couldn’t run any
programs, and | couldn’t shut down the computer. | had to pull the power switch. Luckily,
no files died. To ensure you won't lose any files either, please run sync right before you
do thei nsnod and the r nmod.

Forget about / pr oc files, forget about device files. They're just minor details. The
real process to kernel communication mechanism, the one used by all processes, is system
calls. When a process requests a service from the kernel (such as opening afile, forking
to a new process, or reguesting more memory), this is the mechanism used. If you want
to change the behaviour of the kernel in interesting ways, thisisthe place to do it. By the
way, if you want to see which system calls a program uses, run strace <comrand>
<ar gunment s>.

In general, a process is not supposed to be able to access the kernel. It can’t access
kernel memory and it can't call kernel functions. The hardware of the CPU enforces this
(that’s the reason why it's called ‘protected mode’). System calls are an exception to this
general rule. What happensis that the process fills the registers with the appropriate values
and then calls a special instruction which jumps to a previously defined location in the

65

kernel (of course, that location is readable by user processes, it is not writable by them).
Under Intel CPUSs, thisis done by means of interrupt 0x80. The hardware knows that once
you jump to this location, you are no longer running in restricted user mode, but as the
operating system kernel — and therefore you're allowed to do whatever you want.

The location in the kernel a process can jump to is called syst emcal | . The pro-
cedure at that location checks the system call number, which tells the kernel what service
the process requested. Then, it looks at the table of system cals (sys_cal | _t abl e)
to see the address of the kernel function to call. Then it cals the function, and &f-
ter it returns, does a few system checks and then return back to the process (or to
a different process, if the process time ran out). If you want to read this code, it's
at the source file ar ch/ <archi t ect ure>/ kernel / entry. S, after the line EN-
TRY(systemcal |).

So, if we want to change the way a certain system call works, what we need to do isto
write our own function to implement it (usually by adding a bit of our own code, and then
calling the original function) and then change the pointer at sys_cal | _t abl e to point to
our function. Because we might be removed later and we don’t want to leave the systemin
an unstable state, it's important for cl eanup_nodul e to restore the table to its original
state.

The source code here is an example of such a kernel module. We want to ‘spy’ on a
certain user, and to pr i nt k amessage whenever that user opens afile. Towards this end,
we replace the system call to open a file with our own function, called our _sys_open.
This function checks the uid (user’sid) of the current process, and if it's equal to the uid
we spy on, it callspri nt k to display the name of the file to be opened. Then, either way,
it callsthe original open function with the same parameters, to actually open the file.

Thei ni t _modul e function replaces the appropriate location in sys_cal | _t abl e
and keeps the original pointer in a variable. The cl eanup_nodul e function uses that
variable to restore everything back to normal. This approach is dangerous, because of the
possibility of two kernel modules changing the same system call. Imagine we have two
kernel modules, A and B. A’s open system call will be A_open and B’s will be B_open.
Now, when A isinserted into the kernel, the system call is replaced with A_open, which
will call the original sys_open when it's done. Next, B is inserted into the kernel, which
replaces the system call with B_open, which will call what it thinks is the original system
call, A_open, when it's done.

Now, if B is removed first, everything will be well — it will simply restore the system
call to A_open, which callsthe original. However, if A isremoved and then B is removed,
the system will crash. A’'s removal will restore the system call to the original, sys_open,

cutting B out of the loop. Then, when B is removed, it will restore the system call to what
it thinks isthe original, A_open, which is no longer in memory. At first glance, it appears
we could solve this particular problem by checking if the system call is equal to our open
function and if so not changing it at al (so that B won't change the system call when it's
removed), but that will cause an even worse problem. When A isremoved, it sees that the
system call was changed to B_open so that it is no longer pointing to A_open, so it won't
restore it to sys.open before it is removed from memory. Unfortunately, B_open will still
try to call A_open which is no longer there, so that even without removing B the system
would crash.

I can think of two ways to prevent this problem. The first is to restore the call to the
original value, sys_open. Unfortunately, sys.open is not part of the kernel system tablein
/ proc/ ksyns, sowe can't accessit. The other solution is to use the reference count to
prevent root from r nmod’ing the module once it is loaded. This is good for production
modules, but bad for an educational sample — whichiswhy | didn’t do it here.

syscall.c

/* syscall.c
*
* Systemcall "stealing" sanple
*/

/* Copyright (C) 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

#i ncl ude <sys/syscall.h> /[* The list of systemcalls */

/* For the current (process) structure, we need
* this to know who the current user is. */
#i ncl ude <l i nux/sched. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
#i ncl ude <asm uaccess. h>
#endi f

/* The systemcall table (a table of functions). W
* just define this as external, and the kernel wll
* fill it up for us when we are insnod’ ed
*/

extern void *sys call _table[];

/* UD we want to spy on - will be filled fromthe
* conmand |ine */
int uid;

#i f LI NUX_VERSI ON_CODE >= KERNEL_VERSI O\(2, 2, 0)

MODULE_PARM ui d, "i");
#endi f
/* A pointer to the original systemcall. The reason

* we keep this, rather than call the original function
* (sys_open), is because sonebody el se m ght have

* replaced the systemcall before us. Note that this

* is not 100% safe, because if another nodul e

* replaced sys_open before us, then when we’'re inserted
* we'll call the function in that module - and it

* m ght be renpved before we are

* Anot her reason for this is that we can’'t get sys_open

* |t's a static variable, so it is not exported. */
asninkage int (*original _call)(const char *, int, int);

/* For sonme reason, in 2.2.3 current->uid gave me

* zero, not the real user ID | tried to find what went
* wong, but | couldn’'t do it in a short tine, and
*I"’mlazy - so I'll just use the systemcall to get the

* uid, the way a process woul d.

* For sone reason, after | reconpiled the kernel this
* probl em went away.

*/

asnm i nkage int (*getuid_call)();

/* The function we'll replace sys_open (the function

* called when you call the open systemcall) with. To
* find the exact prototype, with the nunber and type
* of argunents, we find the original function first

* (it's at fs/open.c).

* In theory, this neans that we're tied to the

* current version of the kernel. In practice, the

* gystem calls al nost never change (it would weck havoc
* and require programs to be reconpiled, since the system
* calls are the interface between the kernel and the
* processes).

*/
asnl i nkage i nt our_sys_open(const char *fil enane,
int flags,
i nt node)
{
int i =0;
char ch;

/* Check if this is the user we're spying on */
if (uid == getuid_call()) {

/* getuid_call is the getuid system call

* which gives the uid of the user who

* ran the process which called the system

* call we got */

/* Report the file, if relevant */
printk("Opened file by %: ", uid);
do {
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
get _user(ch, filename+i);
#el se
ch = get _user(fil enane+i);
#endi f
i ++;
printk("%", ch);
} while (ch !'= 0);
printk("\n");

/*

/* Call the original sys open - otherw se, we |ose
* the ability to open files */
return original _call (filename, flags, node);

Initialize the nodule - replace the systemcall */

int init_nodul e()

{

/* Warning - too late for it now, but naybe for

* next time... */

printk("l’' mdangerous. | hope you did a ");
printk("sync before you insnod ed ne.\n");
printk("My counterpart, cleanup_nodule(), is even");
printk("nore dangerous. [f\n");

printk("you value your file system it will ");
printk("be \"sync; rnmod\" \n");

printk("when you renove this nodule.\n");

/* Keep a pointer to the original function in

* original _call, and then replace the system cal
* in the systemcall table with our_sys_open */
original _call = sys call _table[__NR open];

sys_call table[__NR open] = our_sys_open

/* To get the address of the function for system
* call foo, go to sys call _table[__NR foo]. */

printk("Spying on U D: %\ n", uid);

/* Get the systemcall for getuid */
getuid_call = sys call _table[__NR getuid];

return O;

/* Cdeanup - unregister the appropriate file from/proc */
voi d cl eanup_nodul e()

{

/* Return the systemcall back to normal */

if (sys_call _table[__NR open] != our_sys open) {
printk("Sonebody el se also played with the ");
printk("open systemcall\n");
printk("The systemnmay be left in ");
printk("an unstable state.\n");

}

sys_call _table[__NR open] = original_call;

Chapter 8

Blocking Processes

What do you do when somebody asks you for something you can’t do right away? If
you're a human being and you' re bothered by a human being, the only thing you can say is:
‘Not right now, I'm busy. Go away!’. But if you're a kernel module and you're bothered
by a process, you have another possibility. You can put the process to sleep until you can
service it. After al, processes are being put to sleep by the kernel and woken up all the
time (that's the way multiple processes appear to run on the same time on asingle CPU).

This kernel module is an example of this. The file (called / pr oc/ sl eep) can only
be opened by a single process at atime. If the file is already open, the kernel module calls
modul e_i nterrupti bl e_sl eep_on!. Thisfunction changes the status of the task (a
task is the kernel data structure which holds information about a process and the system
cal it'sin, if any) to TASK_I NTERRUPTI BLE, which means that the task will not run
until it is woken up somehow, and adds it to Wi t Q, the queue of tasks waiting to access
the file. Then, the function calls the scheduler to context switch to a different process, one
which has some use for the CPU.

When a process is done with thefilg, it closesit, and nodul e_cl ose iscaled. That
function wakes up all the processes in the queue (there’s no mechanism to only wake up
one of them). It then returns and the process which just closed the file can continue to
run. Intime, the scheduler decides that that process has had enough and gives control of
the CPU to another process. Eventually, one of the processes which was in the queue will
be given control of the CPU by the scheduler. It starts at the point right after the call to
modul e_i nterrupti bl e_sl eep_on 2. It can then proceed to set a global variable to

1The easiest way to keep afile openisto openitwithtai | -f.
2This means that the process is still in kernel mode — as far as the process is concerned, it issued the open

73

tell al the other processes that the file is still open and go on with itslife. When the other
processes get a piece of the CPU, they’ Il see that global variable and go back to sleep.

To make our life more interesting, nodul e_cl ose doesn’t have a monopoly on wak-
ing up the processes which wait to access the file. A signal, such as Ctrl-C (SI G NT) can
also wake up aprocess®. In that case, we want to return with - El NTR immediately. This
isimportant so users can, for example, kill the process before it receives thefile.

There is one more point to remember. Some times processes don’'t want to sleep, they
want either to get what they want immediately, or to be told it cannot be done. Such
processes use the O_NONBLOCK flag when opening the file. The kernel is supposed to
respond by returning with the error code - EAGAI Nfrom operations which would otherwise
block, such as opening the file in this example. The program cat_noblock, availablein the
source directory for this chapter, can be used to open afile with O.NONBL OCK.

deep.c

/* sleep.c - create a /proc file, and if several
* processes try to open it at the sane tinme, put all
* but one to sleep */

/* Copyright (C) 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */

#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodversions. h>

#endi f

system call and the system call hasn't returned yet. The process doesn’'t know somebody else used the CPU for
most of the time between the moment it issued the call and the moment it returned.

3Thisisbecausewe used nodul e_i nt er rupt i bl e_sl eep_on. Wecould haveused modul e_sl eep_on
instead, but that would have resulted is extremely angry users whose control C's are ignored.

/* Necessary because we use proc fs */
#i ncl ude <linux/proc_fs. h>

/* For putting processes to sleep and waki ng themup */
#i ncl ude <l i nux/sched. h>
#i ncl ude <l i nux/w apper. h>

/* In 2.2.3 [usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

#if LI NUX_VERSI ON_CCODE >= KERNEL_VERSI O\(2, 2, 0)
#i ncl ude <asnfuaccess.h> /[* for get_user and put_user */
#endi f

/* The nodule’'s file functions ***x**kxxkkkxxkkkxrhkx */

/* Here we keep the | ast nessage received, to prove
* that we can process our input */

#defi ne MESSAGE_LENGTH 80

static char Message[MESSAGE LENGTH];

/* Since we use the file operations struct, we can’'t use
* the special proc output provisions - we have to use
* a standard read function, which is this function */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)

static ssize_t nodul e_out put (
struct file *file, /* The file read */
char *buf, /* The buffer to put data to (in the
* user segment) */
size_t len, [/* The length of the buffer */
loff_t *offset) /* Ofset inthe file - ignore */
#el se
static int nodul e out put(
struct inode *inode, /* The inode read */
struct file *file, [* The file read */
char *buf, /* The buffer to put data to (in the
* user segnent) */
int len) [/* The length of the buffer */
#endi f
{
static int finished = 0;
int i;
char message[MESSAGE LENGTH+30] ;

/* Return O to signify end of file - that we have
* nothing nore to say at this point. */
if (finished) {

finished = 0;

return O;

/* If you don't understand this by now, you're
* hopel ess as a kernel programer. */
sprintf(message, "Last input:%\n", Message);
for(i=0; i<len && nessage[i]; i ++)

put user(nessage[i], buf+i);

finished = 1,
return i; /* Return the number of bytes "read" */

/* This function receives input fromthe user when
* the user wites to the /proc file. */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
static ssize_t nodul e_i nput (

struct file *file, [* The file itself */

const char *buf, [* The buffer with input */

size_ t length, [* The buffer’s length */

lof f_t *offset) /* offset to file - ignore */
#el se

static int nodul e_input(
struct inode *inode, /* The file's inode */

struct file *file, /* The file itself */
const char *buf, [* The buffer with the input */
i nt | ength) /* The buffer’s length */
#endi f
{
int i;

/* Put the input into Message, where nodul e_out put
*will later be able to use it */
for(i=0; i<MESSAGE LENGTH 1 && i<length; i++)
#if LI NUX_VERSI ON_CCODE >= KERNEL_VERSI O\(2, 2, 0)
get _user (Message[i], buf+i);
#el se
Message[i] = get_user(buf+i);
#endi f
/* we want a standard, zero term nated string */
Message[i] = "\0O’

/* W need to return the nunber of input
* characters used */
return i;

}

/* 1 if the file is currently open by sonebody */

int Already_Open = 0;

/* Queue of processes who want our file */
static struct wait_queue *WaitQ = NULL;

/* Called when the /proc file is opened */
static int nmodul e_open(struct inode *inode,
struct file *file)

/* If the file's flags include O NONBLOCK, it neans

* the process doesn’'t want to wait for the file.

* |nthis case, if the file is already open, we

* should fail with -EAGAIN, neaning "you'll have to

* try again", instead of blocking a process which

* would rather stay awake. */

if ((file->f _flags & O NONBLOCK) && Al ready_ Open)
return - EAGAI N,

/* This is the correct place for MOD_|I NC_USE COUNT
* because if a process is in the loop, whichis

* within the kernel module, the kernel nodul e nust
* not be renoved. */

MOD_| NC_USE_COUNT;

/* If the file is already open, wait until it isnt */
whil e (Al ready_Open)
{
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
int i, is_sig=0;
#endi f

/* This function puts the current process,

* including any systemcalls, such as us, to sleep

* Execution will be resuned right after the function
* call, either because sonebody called

* wake_up(&MitQ (only nodul e_cl ose does that,

* when the file is closed) or when a signal, such
* as Crl-C, is sent to the process */

nmodul e_interruptible_sleep on(&W\itQ ;

/* I'f we woke up because we got a signal we're not
* blocking, return -EINTR (fail the systemcall).
* This allows processes to be killed or stopped. */

* Emmanuel Papirakis:

* This is alittle update to work with 2.2.*. Signals
* now are contained in two words (64 bits) and are

* stored in a structure that contains an array of two
* unsigned |l ongs. W now have to make 2 checks in our if.

* Ori Ponerant z:

* Nobody prom sed ne they' || never use nore than 64
* bits, or that this book won't be used for a version
* of Linux with a word size of 16 bits. This code
* would work in any case.
*/
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)

for(i=0; i< NSIGWRDS && !is_sig; i++)
is sig = current->signal.sig[i] &
“current->bl ocked.sig[i];
if (is_sig) {
#el se
if (current->signal & “current->bl ocked) ({
#endi f
/[* It’s inportant to put MOD DEC USE COUNT here,

* because for processes where the open is

* interrupted there will never be a correspondi ng
* close. If we don't decrenent the usage count

* here, we will be left with a positive usage

* count which we'll have no way to bring down to
* zero, giving us an imortal nodul e, which can

* only be killed by rebooting the nmachine. */
MOD_DEC_USE_COUNT

return - EINTR;

/* If we got here, Already_Open nust be zero */

/* Open the file */
Al ready_ Open = 1;
return O; /* Allow the access */

/* Called when the /proc file is closed */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)

i nt nodul e_cl ose(struct inode *inode, struct file *file)

#el se

voi d nodul e_cl ose(struct inode *inode, struct file *file)

#endi f

{
/* Set Already_Open to zero, so one of the processes
*inthe WaitQwill be able to set Al ready Open back
* to one and to open the file. Al the other processes
* will be called when Already_Open is back to one, so
* they' Il go back to sleep. */
Al ready_Open = 0;

/* Wake up all the processes in WitQ so if anybody

* is waiting for the file, they can have it. */
nodul e_wake up(&WMitQ ;

MOD_DEC_USE_COUNT;

#if LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
return 0; /* success */
#endi f
}
/* This function decides whether to allow an operation

*

st

{

(return zero) or not allowit (return a non-zero
whi ch indicates why it is not allowed).

The operation can be one of the follow ng val ues:

- Execute (run the "file" - meaningless in our case)
- Wite (input to the kernel nodule)

- Read (output fromthe kernel nodul e)

A N O

This is the real function that checks file

perm ssions. The permissions returned by Is -1 are

for referece only, and can be overridden here.
/

atic int nodul e _pernission(struct inode *inode, int op)

/* W allow everybody to read from our nodul e, but

* only root (uid 0) nay wite to it */

if (op==4]| (op ==2 & current->euid == 0))
return O;

/[* If it’s anything el se, access is denied */
return - EACCES;

/*

st

#i

Structures to register as the /proc file, with
pointers to all the relevant functions. *****x*x*x*xx%x x/

File operations for our proc file. This is where
we place pointers to all the functions called when
sonebody tries to do sonething to our file. NULL
means we don’t want to deal with sonething. */
atic struct file operations File Ops 4 Qur _Proc File =
{
NULL, [/* |seek */
nmodul e_output, /* "read" fromthe file */
nmodul e_i nput /[* "wite" to the file */
NULL, /* readdir */
NULL, /* select */
NULL, [/* ioctl */
NULL, /* rmap */
nmodul e_open,/* called when the /proc file is opened */
f LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
NULL, [* flush */

#endi f

st

nodul e_cl ose /* called when it's classed */

}s

I node operations for our proc file. W need it so

we' | | have sonewhere to specify the file operations
structure we want to use, and the function we use for
perm ssions. It’'s also possible to specify functions

to be called for anything el se which could be done to an
i node (although we don’t bother, we just put NULL). */
atic struct inode_operations Inode Ops 4 Qur Proc _File =

{

&File_Ops_4 Qur_Proc_File,
NULL, /* create */

NULL, /* | ookup */

NULL, /* link */

NULL, /* unlink */

NULL, /* symink */

NULL, /* nkdir */

NULL, /* rmdir */

NULL, /* nknod */

NULL, /* renane */

NULL, /* readlink */

NULL, /* follow_link */
NULL, /* readpage */

NULL, /* writepage */
NULL, /* bmap */

NULL, /* truncate */

nodul e_perm ssion /* check for perm ssions */

b

/* Directory entry */
static struct proc_dir_entry Qur_Proc_File =
{
0, /* Inode nunmber - ignore, it will be filled by
* proc_register[_dynanic] */

5, /* Length of the file name */
"sleep", /* The file nane */
SIFREG| S IRUGO | S | WSR
/* File mode - this is a regular file which
* can be read by its owner, its group, and everybody
* else. Also, its owner can wite to it.

* Actually, this field is just for reference, it’'s

* modul e_perni ssion that does the actual check. It

* could use this field, but in our inplenentation it
* doesn't, for sinplicity. */

1, /* Nunmber of links (directories where the

* file is referenced) */
0, 0, /* The uid and gid for the file
* it to root */
80, /* The size of the file reported by
& node_Ops_4 Qur_Proc_File,
/* A pointer to the inode structure for
* the file, if we need it. In our case

* do, because we need a wite function

- we give

ls. */

*/

NULL /* The read function for the file.

* |Irrel evant, because we put it
* in the inode structure above *

/

/* Module initialization and cl eanup *****x***xxxxxxkx */

/-k
i nt

{

Initialize the nodule - register the pro
i nit_nodul e()

c file */

/* Success if proc_register _dynamc is a success,

* failure otherw se */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
return proc_register(&rroc_root, &ur_ Pro

#el

se

return proc_register_dynani c(&proc_root,
#endi f

/

* proc_root is the root directory for th
* fs (/proc). This is where we want our
* | ocat ed.

*/

c File);

&Qur _Proc_File);

e proc
file to be

*

Cl eanup - unregister our file from/proc. This could

get dangerous if there are still processes waiting in
Wait Q because they are inside our open function,
which will get unloaded. I'lIl explain howto avoid

renoval of a kernel module in such a case in
chapter 10. */

voi d cl eanup_nodul e()

{

proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);

Chapter 9
Replacing printk’s

In the beginning (chapter 1), | said that X and kernel module programming don’t mix.
That's true while developing the kernel module, but in actual use you want to be able to
send messages to whichever tty! the command to the module came from. Thisisimportant
for identifying errors after the kernel module is released, because it will be used through
all of them.

The way thisis doneisby using cur r ent , apointer to the currently running task, to
get the current task’s tty structure. Then, we look inside that tty structure to find a pointer
to a string write function, which we use to write a string to the tty.

printk.c

/* printk.c - send textual output to the tty you're
* running on, regardl ess of whether it’'s passed
* through X11, telnet, etc. */

/* Copyright (C 1998 by Ori Ponerantz */

/* The necessary header files */

1Teletype, originally acombination keyboard—printer used to communicate with a Unix system, and today an
abstraction for the text stream used for aUnix program, whether it's a physical terminal, an xterm onan X display,
anetwork connection used with telnet, etc.

86

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

/* Necessary here */
#i ncl ude <l i nux/sched. h> /* For current */
#i nclude <linux/tty. h> /[* For the tty declarations */

/* Print the string to the appropriate tty, the one
* the current task uses */
void print_string(char *str)
{
struct tty_struct *my_tty;

/* The tty for the current task */
ny_tty = current->tty;

/* If ny_tty is NULL, it neans that the current task
* has no tty you can print to (this is possible, for
* exanple, if it’s a daenon). In this case, there's
* not hing we can do. */

if (my_tty !'= NULL) {

/[* ny _tty->driver is a struct which holds the tty's
* functions, one of which (wite) is used to

* wite strings to the tty. It can be used to take
* a string either fromthe user’s nenory segment

* or the kernel’'s nmenory segnent.

*

(*

str, /

The function's first paraneter is the tty to
wite to, because the same function would
normal Iy be used for all tty's of a certain type.
The second paraneter controls whether the
function receives a string fromkernel menory
(false, 0) or fromuser nenory (true, non zero).
The third paraneter is a pointer to a string,
and the fourth paraneter is the I ength of
the string.
/
(my_tty->driver).wite)(
my_tty, /* The tty itself */
0, /* W don’t take the string fromuser space */
* String */

strlen(str)); /* Length */

ttys were originally hardware devices, which
(usual ly) adhered strictly to the ASCI| standard.
According to ASCII, to nove to a new |ine you
need two characters, a carriage return and a
line feed. In Unix, on the other hand, the
ASCIl line feed is used for both purposes - so
we can’t just use \n, because it wouldn’t have
a carriage return and the next line wll
start at the colum right

after the line feed.

BTW this is the reason why the text file

is different between Uni x and W ndows.

In CP/Mand its derivatives, such as M5-DCS and
W ndows, the ASCI| standard was strictly
adhered to, and therefore a new line requires
both a line feed and a carriage return.

*/

(*

(my_tty->driver).wite)(
ny_tty,

01
"\ 015\ 012",
2);

/* Module initialization and cl eanup *****x**x*kxxkxxkxx x/

/* Initialize the nodule - register the proc file */
int init_nodul e()

{
print_string("Mdule Inserted");

return O;

/* Ceanup - unregister our file from/proc */
voi d cl eanup_nodul e()

{
print_string("Mdul e Removed");

}

Chapter 10

Scheduling Tasks

Very often, we have ‘housekeeping’ tasks which have to be done at a certain time, or
every so often. If the task isto be done by aprocess, wedo it by putting itinthecr ont ab
file. If the task is to be done by a kernel module, we have two possibilities. The first isto
put a process in the cr ont ab file which will wake up the module by a system call when
necessary, for example by opening afile. Thisisterribly inefficient, however — we run a
new process off of cr ont ab, read a new executable to memory, and all this just to wake
up akernel module which isin memory anyway.

Instead of doing that, we can create a function that will be called once for every timer
interrupt. The way we do thisis we create atask, heldinastruct tqg._struct,which
will hold a pointer to the function. Then, we use queue_t ask to put that task on a
task list called t g_ti ner, which is the list of tasks to be executed on the next timer
interrupt. Because we want the function to keep on being executed, we need to put it back
ont g_ti mer wheneveritiscaled, for the next timer interrupt.

There's one more point we need to remember here. When a module is removed by
r mmod, first its reference count is checked. If it is zero, nodul e_cl eanup is called.
Then, the module is removed from memory with all its functions. Nobody checksto seeif
the timer’s task list happens to contain a pointer to one of those functions, which will no
longer be available. Ageslater (from the computer’s perspective, from ahuman perspective
it's nothing, less than a hundredth of a second), the kernel has a timer interrupt and tries
to call the function on the task list. Unfortunately, the function is no longer there. In most
cases, the memory page where it sat is unused, and you get an ugly error message. But if
some other code is now sitting at the same memory location, things could get very ugly.

90

Unfortunately, we don’t have an easy way to unregister atask from atask list.

Since cl eanup_nodul e can't return with an error code (it's avoid function), the so-
lution is to not let it return at all. Instead, it calls sl eep_on or modul e_sl eep_on! to
put the r mrod process to sleep. Before that, it informs the function called on the timer
interrupt to stop attaching itself by setting aglobal variable. Then, on the next timer inter-
rupt, ther mod processwill be woken up, when our function is no longer in the queue and
it's safe to remove the module.

sched.c

/* sched.c - scheduale a function to be called on
* every timer interrupt. */

/* Copyright (C 1998 by Ori Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

/* Necessary because we use the proc fs */
#i ncl ude <linux/proc_fs. h>

/* We schedual e tasks here */
#i ncl ude <l i nux/tqueue. h>

1They'reredly the same.

/* W also need the ability to put ourselves to sleep
* and wake up later */
#i ncl ude <l i nux/sched. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’'t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

/* The nunber of times the timer interrupt has been
* called so far */
static int Timerintrpt = O;

/* This is used by cleanup, to prevent the nmodule from
* being unloaded while intrpt_routine is still in

* the task queue */

static struct wait_queue *WaitQ = NULL;

static void intrpt_routine(void *);

/* The task queue structure for this task, fromtqueue.h */
static struct tqg_struct Task = {
NULL, /* Next itemin list - queue_task will do
* this for us */
0, /* A flag neaning we haven’'t been inserted
* into a task queue yet */
intrpt_routine, /* The function to run */
NULL /* The void* paraneter for that function */

}s

/* This function will be called on every tiner
* interrupt. Notice the void* pointer - task functions
* can be used for nore than one purpose, each tine
* getting a different paraneter. */
static void intrpt_routine(void *irrel evant)
{
/* Increment the counter */
Ti mer | nt r pt ++;

/* If cleanup wants us to die */
if (WaitQ != NULL)

wake up(&WMitQ; /* Now cl eanup_nodul e can return */
el se

/* Put ourselves back in the task queue */

queue_t ask(&Task, &t q_tiner);

/* Put data into the proc fs file. */

int procfile_read(char *buffer,
char **pbuffer |l ocation, off _t offset,
int buffer_length, int zero)

int len; /* The nunber of bytes actually used */
/* This is static so it will still be in nmenory
* when we | eave this function */

static char ny_buffer[80];

static int count = 1;

/* W give all of our information in one go, so if

* the anybody asks us if we have nore information
* the answer shoul d al ways be no.
*/
if (offset > 0)
return O;

/* Fill the buffer and get its length */

len = sprintf(my_buffer
"Timer was called % tines so far\n",
Timerlntrpt);

count ++;

/* Tell the function which called us where the
* puffer is */
*puffer Il ocation = my_buffer

/* Return the length */
return | en;

struct proc_dir_entry Qur_Proc_File =
{
0, /* Inode nunmber - ignore, it will be filled by
* proc_register_dynamc */
5, /* Length of the file name */
"sched", /* The file nane */
S IFREG | S_|I RUGO
/* File mode - this is a regular file which can
* be read by its owner, its group, and everybody
* else */
1, /* Number of links (directories where
* the file is referenced) */
0, 0, /* The uid and gid for the file - we give
* it to root */
80, /* The size of the file reported by |Is. */

NULL, /* functions which can be done on the
* inode (linking, renoving, etc.) - we don’t
* support any. */
procfil e_read,
/* The read function for this file, the function called
* when sonebody tries to read sonething fromit. */
NULL
/* We could have here a function to fill the
* file's inode, to enable us to play with
* perm ssions, ownership, etc. */

}s

/* Initialize the nodule - register the proc file */

int init_nodul e()

{
/* Put the task in the tqg_tiner task queue, so it
* will be executed at next timer interrupt */
gueue_t ask(&Task, &t q_tiner);

/* Success if proc_register _dynamc is a success,

* failure otherw se */
#if LI NUX_VERSI ON_CODE > KERNEL_VERSI ON(2, 2, 0)

return proc_register(&rroc_root, &ur_ Proc_File);
#el se

return proc_register_dynanic(&roc_root, &ur Proc File);
#endi f
}

/* O eanup */
voi d cl eanup_nodul e()
{
/* Unregister our /proc file */
proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);

}

*

*

Sleep until intrpt_routine is called one |ast
tinme. This is necessary, because ot herw se we'll
deal | ocate the nenory holding intrpt_routine and
Task while tg_timer still references them
Notice that here we don't allow signals to

i nterrupt us.

Since WaitQ is now not NULL, this autonatically
tells the interrupt routine it’'s tinme to die. */

sl eep_on(&WMitQ ;

Chapter 11

Interrupt Handlers

Except for the last chapter, everything we did in the kernel so far we've done as a
response to a process asking for it, either by dealing with a special file, sendingani oct | ,
or issuing a system call. But the job of the kernel isn’t just to respond to process requests.
Another job, which is every bit as important, is to speak to the hardware connected to the
machine.

There are two types of interaction between the CPU and the rest of the computer’s
hardware. The first type is when the CPU gives orders to the hardware, the other is when
the hardware needs to tell the CPU something. The second, called interrupts, is much
harder to implement because it has to be dealt with when convenient for the hardware, not
the CPU. Hardware devices typicaly have a very small amount of ram, and if you don’t
read their information when available, it islost.

Under Linux, hardware interrupts are called IRQs (short for Interrupt Requests)!.
There are two types of IRQs, short and long. A short IRQ is one which is expected to
take avery short period of time, during which the rest of the machine will be blocked and
no other interrupts will be handled. A long IRQ is one which can take longer, and dur-
ing which other interrupts may occur (but not interrupts from the same device). If at all
possible, it's better to declare an interrupt handler to be long.

When the CPU receives an interrupt, it stops whatever it's doing (unlessit’s processing
a more important interrupt, in which case it will deal with this one only when the more
important one is done), saves certain parameters on the stack and callsthe interrupt handler.
This means that certain things are not alowed in the interrupt handler itself, because the

1Thisis standard nomencalture on the Intel architecture where Linux originated.

97

system isin an unknown state. The solution to this problem is for the interrupt handler to
do what needs to be done immediately, usually read something from the hardware or send
something to the hardware, and then schedul e the handling of the new information at alater
time (thisis called the ‘bottom half") and return. The kernel is then guaranteed to call the
bottom half as soon as possible — and when it does, everything allowed in kernel modules
will be allowed.

The way to implement this is to call r equest _i r g to get your interrupt handler
caled when the relevant IRQ is received (there are 16 of them on Intel platforms).
This function receives the IRQ number, the name of the function, flags, a name for
[proc/interrupts and aparameter to pass to the interrupt handler. The flags can in-
clude SA_SHI RQto indicate you're willing to share the IRQ with other interrupt handlers
(usually because a number of hardware devices sit on the same IRQ) and SA_I NTERRUPT
to indicate thisis afast interrupt. This function will only succeed if there isn’t already a
handler on this IRQ, or if you're both willing to share.

Then, from within the interrupt handler, we communicate with the hardware and
then use queue_t ask_i r q with t q_i mredi at e and mar k_bh(BH.I| MVEDI ATE) to
schedule the bottom half. Thereasonwe can’'t usethe standard queue_t ask inversion 2.0
is that the interrupt might happen right in the middie of somebody else's queue_t ask?.
We need mar k _bh because earlier versionsof Linux only had an array of 32 bottom halves,
and now one of them (BH.I MVEDI ATE) is used for the linked list of bottom halves for
driverswhich didn’'t get a bottom half entry assigned to them.

11.1 Keyboardson thelntel Architecture

Warning: Therest of thischapter iscompletely I ntel specific. |f you’'renot running
on an Intel platform, it will not work. Don’t even try to compilethe code here.

| had a problem with writing the sample code for this chapter. On one hand, for an
example to be useful it has to run on everybody’s computer with meaningful results. On
the other hand, the kernel already includes device drivers for all of the common devices,
and those device drivers won't coexist with what I'm going to write. The solution I've
found was to write something for the keyboard interrupt, and disable the regular keyboard
interrupt handler first. Sinceit is defined asa static symbol in the kernel sourcefiles (specif-
ically,dri ver s/ char/ keyboar d. c), thereis no way to restoreit. Beforeinsmod'ing
this code, do on another terminal sl eep 120 ; reboot if you vaueyour file system.

2queue_t ask_i r q is protected from this by a global lock — in 2.2 there is no queue_t ask.i r q and
queue_t ask is protected by alock.

Thiscode bindsitself to IRQ 1, which isthe IRQ of the keyboard controlled under Intel
architectures. Then, when it receives a keyboard interrupt, it reads the keyboard's status
(that’s the purpose of thei nb(0x64)) and the scan code, which is the value returned by
the keyboard. Then, as soon asthe kernel think it'sfeasible, it runsgot _char which gives
the code of the key used (the first seven bits of the scan code) and whether it has been
pressed (if the 8th bit is zero) or released (if it's one).

intrpt.c

/* intrpt.c - An interrupt handler. */

/* Copyright (C 1998 by Ori Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

#i ncl ude <l i nux/sched. h>
#i ncl ude <l i nux/tqueue. h>

/* W want an interrupt */
#i ncl ude <linux/interrupt.h>

#i ncl ude <asmi o. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI O\(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

/* BottomHalf - this will get called by the kerne
* as soon as it’'s safe to do everything nornmally
* all owed by kernel nodul es. */
static void got_char(void *scancode)
{
printk("Scan Code % %s.\n",
(int) *((char *) scancode) & Ox7F,
*((char *) scancode) & 0x80 ? "Rel eased" : "Pressed");

/* This function services keyboard interrupts. It reads
* the relevant information fromthe keyboard and then
* schedual es the bottomhalf to run when the kerne
* considers it safe. */

void irg_handler(int irq,

void *dev_id,
struct pt_regs *regs)
{
/* This variables are static because they need to be
* accessi bl e (through pointers) to the bottom
* half routine. */
static unsigned char scancode;
static struct tq_struct task =
{NULL, 0, got_char, &scancode};
unsi gned char status;

/* Read keyboard status */
status = i nb(0x64);
scancode = i nb(0x60);

/* Schedual e bottomhalf to run */
#if LI NUX_VERSI ON_CODE > KERNEL_VERSI O\(2, 2, 0)
gueue_t ask(& ask, & qg_i mediate);

#el se

gqueue_task_irqg(& ask, & qg_inmediate);
#endi f

mar k_bh(| MVEDI ATE_BH) ;
}

/* Initialize the nodule - register the I RQ handl er */
int init_nodul e()
{
/* Since the keyboard handl er won’t co-exist with
* anot her handl er, such as us, we have to disable
* it (free its IRQ before we do anything. Since we
* don’t know where it is, there’s no way to

* reinstate it later - so the conmputer will have to
* be rebooted when we’'re done.
*/

free_irqg(l, NULL);

/* Request IRQ 1, the keyboard IRQ to go to our
* irqg_handler. */
return request _irq(
1, /* The nunber of the keyboard I RQ on PCs */
irq_handler, /* our handler */
SA SH RQ
/* SA SHIRQ neans we're willing to have ot he
* handl ers on this | RQ

*

* SA | NTERRUPT can be used to make the
* handler into a fast interrupt.

*/

"test_keyboard_irqg_handl er”, NULL);

/* O eanup */
voi d cl eanup_nodul e()
{
/* This is only here for conpleteness. It's totally
* irrelevant, since we don't have a way to restore
* the nornmal keyboard interrupt so the computer
* is conpletely useless and has to be rebooted. */
free_irqg(l, NULL);
}

Chapter 12

Symmetrical Multi—Processing

One of the easiest (read, cheapest) ways to improve hardware performance is to put
more than one CPU on the board. This can be done either making the different CPUs
take on different jobs (asymmetrical multi—processing) or by making them all run in paral-
lel, doing the same job (symmetrical multi—processing, ak.a. SMP). Doing asymmetrical
multi—processing effectively requires specialized knowledge about the tasks the computer
should do, which is unavailable in a general purpose operating system such as Linux. On
the other hand, symmetrical multi—processing is relatively easy to implement.

By relatively easy, | mean exactly that — not that it's really easy. In a symmetrical
multi—processing environment, the CPUs share the same memory, and as a result code
running in one CPU can affect the memory used by another. You can no longer be certain
that a variable you've set to a certain value in the previous line still has that value — the
other CPU might have played with it while you weren’t looking. Obviously, it'simpossible
to program like this.

In the case of process programming this normally isn’t an issue, because a process will
normally only run on one CPU at atime!. The kernel, on the other hand, could be called
by different processes running on different CPUs.

In version 2.0.x, thisisn’t a problem because the entire kernel is in one big spinlock.
This means that if one CPU isin the kernel and another CPU wants to get in, for example
because of asystem call, it has to wait until the first CPU is done. This makes Linux SMP
safe?, but terriably inefficient.

1The exception is threaded processes, which can run on several CPUs at once.
2Meaning it is safe to use it with SMP

104

Inversion 2.2.x, several CPUs can be in the kernel at the sametime. Thisis something
module writers need to be aware of. | got somebody to give me access to an SMP box, so
hopefully the next version of this book will include more information.

Chapter 13

Common Pitfalls

Before | send you on your way to go out into the world and write kernel modules, there
are afew things | need to warn you about. If | fail to warn you and something bad happen,
please report the problem to me for afull refund of the amount | got paid for your copy of
the book.

1. Using standard libraries You can't do that. In a kernel module you can only use
kernel functions, which are the functions you can seein/ pr oc/ ksyns.

2. Disabling interrupts You might need to do this for a short time and that is OK, but
if you don't enable them afterwards, your system will be stuck and you'll have to
power it off.

3. Sticking your head inside a large carnivore | probably don't have to warn you
about this, but | figured | will anyway, just in case.

106

Appendix A

Changes between 2.0 and 2.2

I don’'t know the entire kernel well enough do document all of the changes. In the
course of converting the examples (or actually, adapting Emmanuel Papirakis's changes)
I came across the following differences. | listed al of them here together to help module
programmers, especially those who learned from previous versions of this book and are
most familiar with the techniques | use, convert to the new version.

An additional resource for people who wish to convert
to22isinhttp://ww. at nf. csiro. au/ “rgooch/ | i nux/ docs/ porti ng-
to-2.2.htnm .

1. asm/uaccess.h If you need put _user or get _user you haveto #includeit.

2. get_user Inversion 2.2, get _user receives both the pointer into user memory and
the variable in kernel memory to fill with the information. The reason for thisisthat
get _user can now read two or four bytes at atimeif the variable we read is two or
four byteslong.

3. file_.operations This structure now has a flush function between the open and
cl ose functions.

4. closein file_operations In version 2.2, the close function returns an integer, so it's
alowed to fail.

5. read and write in file_operations The headers for these functions changed. They
now return ssi ze_t instead of an integer, and their parameter list is different. The
inode is no longer a parameter, and on the other hand the offset into thefileis.

107

10.

. proc_register_dynamic This function no longer exists. Instead, you call the regular

proc_regi st er and put zero in the inode field of the structure.

. Signals The signals in the task structure are no longer a 32 bit integer, but an array

of _NSI G.\WORDS integers.

. queue_task_irq Evenif you want to scheduale atask to happen from inside an inter-

rupt handler, you use queue_t ask, not queue_t ask_i r q.

. Module Parameters You no longer just declare module parameters as global vari-

ables. In 2.2 you have to also use MODUL E_PARMto declare their type. Thisisabig
improvement, because it allows the module to receive string parameters which start
with a digits, for example, without getting confused.

Symmetrical Multi—Processing The kernel is no longer inside one huge spinlock,
which means that kernel modules have to be aware of SMP.

Appendix B

Where From Here?

I could easily have squeezed a few more chapters into this book. | could have added a
chapter about creating new file systems, or about adding new protocols stacks (asif there's
a need for that — you'd have to dig under ground to find a protocol stack not supported
by Linux). | could have added explanations of the kernel mechanisms we haven't touched
upon, such as bootstrapping or the disk interface.

However, | chose not to. My purpose in writing this book was to provide initiation
into the mysteries of kernel
module programming and to teach the common techniques for that purpose. For people
serioudly interested in kernel programming, | recommend the list of kernel resources in
http://jungla.dit.upmes/™jnseyas/| inux/kernel/hackers-
docs. ht m . Also, as Linus said, the best way is to learn the kernel is to read the source
code yourself.

If you're interested in more examples of short kernel modules, | recommend Phrack
magazine. Even if you're not interested in security, and as a programmer you should be,
the kernel modules there are good examples of what you can do inside the kernel, and
they’re short enough not to require too much effort to understand.

| hope | have helped you in your quest to become a better programmer, or at least to
have fun through technology. And, if you do write useful kernel modules, | hope you
publish them under the GPL, so | can use them too.

109

Appendix C

Goods and Services

I hope nobody minds the shameless promations here. They are al things which are
likely to be of use to beginning Linux Kernel Module programmers.

C.1 Getting thisBook in Print

The Coriolis group is going to print this book sometimes in the summer of *99. If this
is already summer, and you want this book in print, you can go easy on your printer and
buy it in anice, bound form.

110

Appendix D

Showing Your Appreciation

This is a free document. You have no obligations beyond those given in the GNU
Public License (Appendix E). However, if you want to do something in return for getting
this book, there are a few things you could do.

e Send me apostcard to
Oi Pomerant z
Apt. #1032
2355 N Hwy 360
Grand Prairie
TX 75050
USA
If you want to receive athank-you from me, include your e-mail address.

o Contribute money, or better yet, time, to the free software community. Write a pro-
gram or a document and publish it under the GPL. Teach other people how to use
free software, such as Linux or Perl.

e Explain to people how being selfish is not incompatible with living in a society or
with helping other people. | enjoyed writing this document, and | believe publishing
it will contribute to me in the future. At the same time, | wrote a book which, if
you got this far, helps you. Remember that happy people are usually more useful
to oneself than unhappy people, and able people are way better than people of low
ability.

111

e Behappy. If | get to meet you, it will make the encounter better for me, it will make
you more useful for me;-).

Appendix E

The GNU General Public License

Printed below is the GNU General Public License (the GPL or copyleft), under which
this book is licensed.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge,
MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software-to make sure the softwareisfreefor all itsusers.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public Licenseinstead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain

113

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such aprogram, whether gratis or for afee, you
must give the recipients al the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program isthreatened constantly by software patents. Wewishto avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone'sfree use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General
Public License. The ‘Program’, below, refers to any such program or work, and a
‘work based on the Program’ means either the Program or any derivative work under
copyright law: that isto say, awork containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
trandation is included without limitation in the term ‘modification’.) Each licensee
isaddressed as ‘you'.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receiveit, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may chargeafeefor the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for afee.

. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no chargeto al third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must causeit, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself isinteractive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissionsfor other licensees extend to the entire whole, and thusto each and every
part regardless of who wroteit.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with awork based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or awork based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readabl e source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b. Accompany it with awritten offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢. Accompany it with theinformation you received asto the offer to distribute cor-
responding source code. (This aternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means al the source
code for al modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a specia exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
adesignated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under

this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such partiesremainin
full compliance.

. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receivesalicensefrom the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole isintended to apply in other circumstances.

It isnot the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or

10.

11

she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
guence of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the Gen-

eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which appliesto it and ‘any later version’, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
aversion number of this License, you may choose any version ever published by the
Free Software Foundation.

If you wish to incorporate parts of the Program into other free programswhose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of al derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE ISNO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM *AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM ISWITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BELIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THEUSE OR INABILITY TOUSE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
APPENDIX: HOW TO APPLY THESE TERMS TO YOUR NEW PROGRAMS

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the ‘ copyright’ line and a pointer to where the full notice is found.

onelineto givethe program’s name and a brief idea of what it does. Copyright
©19yy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it startsin an
interactive mode:

Gnonovi si on version 69, Copyright (C 19yy nane of author
Ghonovi sion cones with ABSOLUTELY NO WARRANTY; for
details type showw. This is free software, and you are
wel cone to redistribute it under certain conditions; type
show ¢ for details.

The hypothetical commands show w and show ¢ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than show w and show c; they could even be mouse-clicks or menu items—-whatever
suits your program.

You should also get your employer (if you work as a programmer) or your schoal, if
any, to sign a ‘copyright disclaimer’ for the program, if necessary. Here is a sample; alter
the names:

Yoyodyne, Inc., hereby disclaimsall copyright interest in the program Gnomo-
vision (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If thisis what you want to do, use
the GNU Library General Public Licenseinstead of this License.

| ndex

/dev, 12, 13
/proc file system, 25
/proc/interrupts, 98
/proc/ksyms, 106
/proc/meminfo, 25
/proc/modules, 8, 14, 25
/proc

using for input, 32

_10, 44
-IOR, 44
_10W, 44
_IOWR, 44
NSIG_WORDS, 108
_KERNEL__, 7
_NO_VERSION_,, 8
_SMP__, 7
2.0.x kernel, 24
2.2 changes, 107
2.2.x kernel, 24
access

sequential, 13
argc, 61
argv, 61

asm/uaccess.h, 107

BH_IMMEDIATE, 98
blocking processes, 73
blocking, how to avoid, 74

121

bottom half, 98
busy, 73

calls

system, 65
character devicefiles, 12
chardev.c, sourcefile, 14, 44
chardev.h, source file, 55
cleanup_module, 5, 14
cleanup_module

genera purpose, 13
close, 107
compilation

conditional, 24
compiling, 6
conditional compilation, 24
config.h, 7
CONFIG_.MODVERSIONS, 7
configuration

kerndl, 7
console, 8
copying Linux, 120
copyright, 113-120
CPU

multiple, 104
crontab, 90
ctrl-c, 74
current pointer, 33
current task, 86

defining ioctls, 57
development version

kernel, 23
devicefiles

block, 13
devicefiles

character, 12, 13
devicefiles

input to, 43
device number

major, 13
devices

physical, 12
DOS, 2

EAGAIN, 74

EINTR, 74

elf_i386, 9

ENTRY (system_call), 66
entry.S, 66

file system registration, 32
file system

/proc, 25
file_operations structure, 13, 32
file_operations

structure, 107
flush, 107
Free Software Foundation, 113

General Public License, 113-120
get_user, 33, 107
GNU

General Public License, 113-120

handlers
interrupt, 97

hard disk

partitions of, 12
hard wiring, 61
header file for ioctls, 57
hello world, 5
hello.c, sourcefile, 5
housekeeping, 90

IDE

hard disk, 12
inb, 99
init_-module, 5
init_-module

genera purpose, 13
inode, 25
inode_operations structure, 32
input to devicefiles, 43
Input

using /proc for, 32
insmod, 8, 61, 65
intel architecture

keyboard, 98
interrupt 0x80, 66
interrupt handlers, 97
interruptibe_sleep_on, 73
interrupts, 108
interrupts

disabling, 106
intrpt.c, source file, 99
ioctl, 43
ioctl.c, sourcefile, 57
ioctl

defining, 57
ioctl

header file for, 57
ioctl

official assignment, 44

ioctl
using in a process, 60
irgs, 108

kernel configuration, 7
kernel versions, 23
KERNEL_VERSION, 24
kernel _version, 8
keyboard, 98
ksyms

proc file, 106

Id, 9
libraries
standard, 106
LINUX, 7
Linux
copyright, 120
LINUX_VERSION_CODE, 24

MACRO_PARM, 61

major device number, 13
major number, 12

makefile, 6

Makefile, sourcefile, 7, 11
mark_bh, 98

memory segments, 33

minor number, 12

mknod, 13
MOD_DEC_USE_COUNT, 14
MOD_INC_USE_COUNT, 14, 67
mod_use_count_, 14

modem, 12, 43

MODULE, 7

Module Parameters, 108
module.h, 8

module_cleanup, 91

module_interruptibe_sleep_on, 73
MODULE_PARM, 108
module_permissions, 33
module_register_chrdev, 13
module_sleep_on, 74, 91
module_wake_up, 74
modversions.h, 7

multi tasking, 73
multi-processing, 104
multiple sourcefiles, 8
multitasking, 74

non blocking, 74
number

major (of device driver), 12

number

major (of physical device), 12

O_NONBLOCK, 74
official ioctl assignment, 44
open

system call, 66

param.c, sourcefile, 61
Parameters

Module, 108
parameters

startup, 61
partition

of hard disk, 12
permissions, 33
physical devices, 12
pointer

current, 33
printk, 8
printk.c, sourcefile, 86

printk root, 8

replacing, 86
proc file system, 25 SA_INTERRUPT, 98
proc SA_SHIRQ, 98

using for input, 32 salut mundi, 5
proc_dir_entry structure, 32 sched.c, source file, 91
proc_register, 25, 108 scheduler, 74
proc_register_dynamic, 25, 108 scheduling tasks, 90
processes segment

blocking, 73 memory, 33
Processes selfishness, 111

kiIIing, 74 sequential access, 13
processes serial port, 43

putting to sleep, 73 shutdown, 65
processes SIGINT, 74

_ waking up, 74 signal, 74

processng) signals, 108

mult, %04 sleep.c, sourcefile, 74
procfs.c, sourcefile, 26, 33 seep
put_.user, 33,107 putting processes to, 73
putting processesto sleep, 73 sleep_on, 74, 91
queue task, 90, 98, 108 SV, 104, 108
queue_task_irg, 98, 108 source files

multiple, 8

read, 107 source
read chardev.c, 14, 44

inthe kernel, 33 source
reference count, 14, 91 chardev.h, 55
refund policy, 106 source
registration hello.c, 5

file system, 32 source
replacing printk’s, 86 intrpt.c, 99
request_irqg, 98 source
rmmod, 8, 65, 67, 91 ioctl.c, 57
rmmod source

preventing, 14 Makefile, 7, 11

source sys._open, 67

param.c, 61 syscall.c, sourcefile, 67
source system calls, 65
printk.c, 86 system_call, 66
source
procfs.c, 26, 33 task, 90
source task structure, 73
sched.c, 91 task
source current, 86
sleep.c, 74 TASK_INTERRUPTIBLE, 73
source tasks
start.c, 9 scheduling, 90
source terminal, 12
stop.c, 10 terminal
source virtual, 8
syscall.c, 67 tg-immediate, 98
ssize t, 107 tg_struct struct, 90
stable version tg_timer, 90
kernel, 23 tty_struct, 86
standard libraries, 106 type checking, 61
start.c, sourcefile, 9
startup parameters, 61 uaccess.h
stop.c, sourcefile, 10 asm, 107
strace, 65
struct file_operations, 13, 32 version.h, 8
struct inode_operations, 32 versions supported, 24
struct proc_dir_entry, 32 versions
struct tg_struct, 90 kernel, 107
struct virtual terminal, 8
tty, 86
structure waking up processes, 74
task, 73 write, 107
Symmetrical Multi—Processing, 108 write
symmetrical multi—processing, 104 in the kernel, 33
sync, 65 write

sys_cal_table, 66 to devicefiles, 43

X
why you should avoid, 8
xterm -C, 8

