GNU Octave

A high-level interactive language for numerical computations
Edition 3 for Octave version 2.9.18
July 2007

John W. Eaton
David Bateman
Sgren Hauberg

Copyright (©) 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 2.9.18 of
Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface e 1
Acknowledgements 1
How You Can Contribute to Octave 3
Distribution 3

1 A Brief Introduction to Octave.......................... 5
1.1 Running OCEave e e e e e e 5
1.2 Simple Examples 5

1.2.1 Creating a Matrix.o e 5
1.2.2 Matrix Arithmetic 5
1.2.3 Solving Linear Equations i 6
1.2.4 Integrating Differential Equations 6
1.2.5 Producing Graphical Qutput......... 7
1.2.6 Editing What You Have Typed 7
1.2.7 Help and Documentationo 7
1.3 Conventions. 7
13,1 FOmtS ..o 8
1.3.2 Evaluation Notation........ 8
1.3.3 Printing Notation...... ... 8
1.3.4 Error MeSSagesottt 8
1.3.5 Format of Descriptions o 8
1.3.5.1 A Sample Function Description.............. 9
1.3.5.2 A Sample Command Description 9
1.3.5.3 A Sample Variable Description, 10

2 Getting Started i 11

2.1 Invoking Octave from the Command Line 11
2.1.1 Command Line Optionsouumr i 11
2.1.2 Startup Files 13

2.2 Quitting OCLave 14

2.3 Commands for Getting Help 14

2.4 Command Line Editing 16
2.4.1 Cursor MoOtiOn oot 16
2.4.2 Killing and Yanking. 17
2.4.3 Commands For Changing Text.............. .. 17
2.4.4 Letting Readline Type For You 18
2.4.5 Commands For Manipulating The History 18
2.4.6 Customizing readlilneoiiii i 20
2.4.7 Customizing the Prompt 20
2.4.8 Diary and Echo Commands. i, 21

2.5 How Octave Reports Errors 22

2.6 Executable Octave Programs i 23

2.7 Comments in Octave Programs............. 24

ii GNU Octave
3 Data Types.. oottt iiiiiieeeenns 25
3.1 Built-in Data Types . .. oo 25
3.1.1 Numeric ObJects 26

3.1.2 Missing Data 26

3.1.3 String ObjJects . ..o 26

3.1.4 Data Structure ODJectS.t 26

3.1.5 Cell Array ObJectS 26

3.2 User-defined Data Types e 26
3.3 ODbJECt SIZES . . oottt 27

4 Numeric Data Typesccoviiiiiiiiininnnnnnnn, 29
A1 MatTiCeS . o oot 29
4.1.1 Empty Matriceso 32

4.2 RAIEES . o oottt 32
4.3 Integer Data Types. 33
4.3.1 Integer Arithmetic 35

4.4 Bit Manipulations 35
4.5 Logical Values. 37
4.6 Predicates for Numeric Objects. 38

5 S 1 15 8 T 41
5.1 Creating SUringS. . ..ottt e e e 42
5.2 Comparing STIiNgSottt 44
5.3 Manipulating STringsooiii i 45
5.4 String CONVEISIONSttt ettt ettt e e et e e et e e e e e 49
5.5 Character Class Functions e 52

6 DataContainersoiiuiiiiiiiinnnnnnnnnns 55
6.1 Data SErUChUIesot 55
6.1.1 Structure ATTAYS.ttt 57

6.1.2 Creating STrUCtUTESo\t e 59

6.1.3 Manipulating Structures.............. 61

6.1.4 Processing Data in Structures........... 61

6.2 Cell ATTAYS . o oottt e 62
6.2.1 Creating Cell Array 63

6.2.2 Indexing Cell ATTAYSottt 65

6.2.3 Cell Arrays of Strings 66

6.2.4 Processing Data in Cell Arrays. 67

6.3 Comma Separated LiSts. 68

7 Variablesoouiiiiii i i 71
7.1 Global Variables. 71
7.2 Persistent Variables. 72
7.3 Status of Variables 74
7.4 Summary of Built-in Variables........... 7

7.5 Defaults from the Environment 79

8 EXPressions.........c.oiieiiiiiieetinneeeenneeneeneanns 81
8.1 Index EXPIressionst e e 81
8.2 Calling Functions. 83

8.2.1 Call by Value. 83
8.2.2 RECUISION . . o\ ottt et e e e e e e e e 84
8.3 Arithmetic Operators. e 85
8.4 Comparison OPEratorsttt e e e ettt 86
8.5 Boolean EXpPressionsooir e 87
8.5.1 Element-by-element Boolean Operators.cooiiiineiiina... 87
8.5.2 Short-circuit Boolean Operators.o i, 87
8.6 Assignment EXpressions. 88
8.7 Increment OpPeratorS.ttt et 91
8.8 Operator Precedence 91

9 Evaluation...............iiiiiiiiintinnnneennnanns 93
9.1 Calling a Function by its Name. 93
9.2 Evaluation in a Different Context.......... 95

10 Statementscitiiiiitnntneeeneeeneennnns 97
10.1 The if Statement 97
10.2 The switch Statement. 98

10.2.1 Notes for the C programmer............. i, 100
10.3 The while Statement................ et 100
10.4 The do—until Statemento i 101
10.5 The for Statement 101

10.5.1 Looping Over Structure Elements 102
10.6 The break Statement. 103
10.7 The continue Statement i 104
10.8 The unwind_protect Statement.................cooiiiiiiinniii., 104
10.9 The try Statemento o 105
10.10 Continuation Lineso 105

11 Functions and Script Files........................... 107
11.1 Defining FUnctions e 107
11.2 Multiple Return Values 109
11.3 Variable-length Argument Lists...... 110
11.4 Variable-length Return Lists 112
11.5 Returning From a Function 112
11.6 Default Arguments 113
11.7 Function Files. e 113

11.7.1 Manipulating the load path.......... 114

11.7.2 Subfunctions 116

11.7.3 Overloading and Autoloading i 116

11.7.4 Function Locking 117
11.8 Script Files . ..o 118
11.9 Function Handles, Inline Functions, and Anonymous Functions 120

11.9.1 Function Handles 120

11.9.2 Anonymous Functions.o 120

11.9.3 Inline Functions 121
1110 Commandsttt e e 122

11.11 Organization of Functions Distributed with Octave 123

iv GNU Octave

12 Errorsand Warningscoviiuinuneeee... 125
12.1 Handling Errors. o 125
12.1.1 Raising Errors.o 125
12.1.2 Catching Errors 127
12.2 Handling Warningsoo it e 129
12.2.1 Tssuing Warningscooii e 129
12.2.2 Enabling and Disabling Warnings 130
13 Debugging...........ccoiiiiiiiiiiiiiiiiiiiiiiia 133
13.1 Entering Debug Mode 133
13.2 Breakpoints. 133
13.3 Debug Mode. 135
14 Imputand OQutput............... 137
14.1 Basic Input and Output 137
14.1.1 Terminal Outpub 137
14.1.1.1 Paging Screen OUtPULottt 139
14.1.2 Terminal Input ... 140
14.1.3 Simple File I/O. ..o 141
14.1.3.1 Saving Data on Unexpected Exits 145
14.1.4 Rational Approximationsiuiiniie e 146
14.2 C-Style I/O Functions 146
14.2.1 Opening and Closing Files........ 147
14.2.2 Simple Outputo 148
14.2.3 Line-Oriented Input....... ... 149
14.2.4 Formatted Outputo 149
14.2.5 Output Conversion for Matrices.o i, 150
14.2.6 Output Conversion Syntaxo, 151
14.2.7 Table of Output Conversionsiueiiuneiinneeinneen... 151
14.2.8 Integer CONVETSIONSottt et e e et e et 152
14.2.9 Floating-Point Conversionsouiueeriin e, 153
14.2.10 Other Output Conversionsc..ouoiet i 153
14.2.11 Formatted Input....... ..o 154
14.2.12 Input Conversion SYNtaxouuee et 155
14.2.13 Table of Input Conversionsouiiiiiinniiinane.. 155
14.2.14 Numeric Input Conversionsue e 156
14.2.15 String Input Conversionsoounn e 156
14.2.16 Binary I/O. ... 156
14.2.17 Temporary Files. o 159
14.2.18 End of File and Errors 160
14.2.19 File Positioning. ... 160
15 Plottingcovviiiiii ittt 163
15.1 Plotting Basics. 163
15.1.1 Two-Dimensional Plots......... 163
15.1.2 Three-Dimensional Plotting 174
15.1.3 Plot Annotations it 177
15.1.4 Multiple Plots on One Page 178
15.1.5 Multiple Plot Windows. o 179
15.1.6 Printing Plots 179
15.1.7 Test Plotting Functions i 181
15.2 Advanced Plotting 181

15.2.1 Graphics ObJectst 182

15.2.2 Graphics Object Properties.o i 185
15.2.2.1 Root Figure Properties....... 186

15.2.2.2 Figure Properties 186

15.2.2.3 AXeS Propertieso 186

15.2.2.4 Line Properties 188

15.2.2.5 Text Properties 188

15.2.2.6 Image Properties. 191

15.2.2.7 Patch Properties i 191

15.2.2.8 Surface Properties....... 191

15.2.3 Managing Default Properties 192
15.2.4 COlOTS . o vttt 193
15.2.5 Line Styles . ..o 193
15.2.6 Marker Styles 193
15.2.7 Interaction with gnuplot........ ... 193

16 Matrix Manipulation................... 195
16.1 Finding Elements and Checking Conditions 195
16.2 Rearranging Matrices. 197
16.3 Applying a Function to an Array 202
16.4 Special Utility Matriceso e 203
16.5 Famous Matrices 208
17 Arithmetic i, 211
17.1 Utility Functions 211
17.2 Complex Arithmetic. 215
17.3 TrigonometTyo 216
17.4 Sums and Products. 219
17.5 Special Functions. 220
17.6 Coordinate Transformations. i, 223
17.7 Mathematical Constants 224
18 Linear Algebra............cciiiiiiiiiieennn. 227
18.1 Techniques used for Linear Algebra............. 227
18.2 Basic Matrix Functions 227
18.3 Matrix Factorizations. 231
18.4 Functions of a MatrixX. o 235
19 Nonlinear Equationscciiiiee.... 237
20 Sparse Matrices.........couiiiiiiiineeneeeeeennnnns 239
20.1 The Creation and Manipulation of Sparse Matrices 239
20.1.1 Storage of Sparse Matriceso i 239
20.1.2 Creating Sparse Matricesot 240
20.1.3 Finding out Information about Sparse Matrices 246
20.1.4 Basic Operators and Functions on Sparse Matrices 249
20.1.4.1 Sparse Functions i 249

20.1.4.2 The Return Types of Operators and Functions 250

20.1.4.3 Mathematical Considerations.oiiiiiiiineiinnaa... 251

20.2 Linear Algebra on Sparse Matrices. 257
20.3 Iterative Techniques applied to sparse matriceso .. 263
20.4 Real Life Example of the use of Sparse Matrices 267

vi GNU Octave

21 Numerical Integration................, 271
21.1 Functions of One Variable. 271
21.2 Orthogonal Collocationot 273
21.3 Functions of Multiple Variables..........., 273

22 Differential Equations 275
22.1 Ordinary Differential Equations 275
22.2 Differential-Algebraic Equations 277

23 Optimizationcciiittiiieneinneneennnns 283
23.1 Linear Programmingo ittt 283
23.2 Quadratic Programming 288
23.3 Nonlinear Programming 289
23.4 Linear Least SQUATESottt e e e e e 290

24 StaAtIStICS v vt i vt ittt it e et et et .. 293
24.1 Descriptive Statistics 293
24.2 Basic Statistical Functions 296
24.3 Statistical Plots 298
244 TeStS . oo 299
245 Models . ..o 305
24.6 DIStriDUBIONSottt 306
24.7 Random Number Generation 313

25 Financial Functionsci e nenennn. 317

D2 T 1< 1= 319
26.1 Set Operationst e 319

27 Polynomial Manipulations 321
27.1 Evaluating Polynomials........ 321
27.2 Finding ROOtSo o 321
27.3 Products of Polynomials 322
27.4 Derivatives and Integrals...... 324
27.5 Polynomial Interpolation.......... 324
27.6 Miscellaneous Functions 326

28 Interpolation 327
28.1 Omne-dimensional Interpolation.......... 327
28.2 Multi-dimensional Interpolation 331

20 Geometryvvviii it e e e e e 335
29.1 Delaunay Triangulation.......... ... 335

29.1.1 Plotting the Triangulation.............. ... i, 336
29.1.2 Identifying points in Triangulation 337
29.2 Voronoi Diagrams 339
29.3 Convex Hull 341

29.4 Interpolation on Scattered Data 342

30 Control Theorycoviiiiiiiiiiiiiiineennns 345
30.1 System Data Structure 345
30.1.1 Variables common to all OCST system formats........................... 346
30.1.2 tf format variables 346
30.1.3 zp format variables 346
30.1.4 ss format variables 346

30.2 System Construction and Interface Functions................................. 347
30.2.1 Finite impulse response system interface functions........................ 347
30.2.2 State space system interface functions........... 347
30.2.3 Transfer function system interface functions................. 352
30.2.4 Zero-pole system interface functions............... 354
30.2.5 Data structure access functions, 355

30.3 System display functions.......... 359
30.4 Block Diagram Manipulations................ . .. 360
30.5 Numerical Functions. 367
30.6 System Analysis-Properties 371
30.7 System Analysis-Time Domain i, 375
30.8 System Analysis-Frequency Domain........... 378
30.9 Controller Designt 382
30.10 Miscellaneous Functions (Not yet properly filed/documented)................. 388
31 Signal Processingcciiiiiiiiinnnn.. 393
32 Image Processingouiiiiiiiieneennannns 403
32.1 Loading and Saving Imagesttt 403
32.2 Displaying Images 404
32.3 Representing Images. 405
32.4 Plotting on top of Images 408
32.5 Color CONVEISION . . . vttt et ettt e e e e e e e e e e e e e 408
33 Audio Processingcctiiiiiiiiiiinnnnn.. 411
34 Quaternionsiiiiiiiiiiiiii i 413
35 System Utilities.............ooiiiiiiiiiia.. 415
35.1 Timing UtIHEIes . . . o oottt 415
35.2 Filesystem Utilities.oo 422
35.3 File Archiving Utilities 427
35.4 Networking Utilities o e 428
35.5 Controlling SUbPIroCesSes.ot 429
35.6 Process, Group, and User IDs i 433
35.7 Environment Variables. 434
35.8 Current Working Directoryo 434
35.9 Password Database Functions 435
35.10 Group Database Functions.............. 435
35.11 System Information 436

35.12 Hashing Functions. 438

viii GNU Octave

36 Packagesoiiiiiiiii e 439
36.1 Installing and Removing Packages i 439
36.2 Using Packages. 439
36.3 Administrating Packages. ... 440
36.4 Creating Packages 440

36.4.1 The DESCRIPTION File. 441
36.4.2 The INDEX file 443
36.4.3 PKG_ADD and PKG_DEL directives.cooiiiiiiiiiinn .. 443

Appendix A Dynamically Linked Functions 445

AL OCt-Files . ..o 445
A.1.1 Getting Started with Oct-Files 445
A.1.2 Matrices and Arrays in Oct-Files i 448
A.1.3 Character Strings in Oct-Files........... ... 451
A1.4 Cell Arrays in Oct-Files. 453
A.1.5 Structures in Oct-Files. 455
A.1.6 Sparse Matrices in Oct-Files 456

A.1.6.1 The Differences between the Array and Sparse Classes................ 457

A.1.6.2 Creating Sparse Matrices in Oct-Files 458

A.1.6.3 Using Sparse Matrices in Oct-Files............. 460
A.1.7 Accessing Global Variables in Oct-Files 460
A.1.8 Calling Octave Functions from Oct-Files 462
A.1.9 Calling External Code from Oct-Files............... 464
A.1.10 Allocating Local Memory in Oct-Files 467
A.1.11 Input Parameter Checking in Oct-Files 467
A.1.12 Exception and Error Handling in Oct-Files.............................. 468
A.1.13 Documentation and Test of Oct-Files 470

A2 Mex-Files . ..o 471
A.2.1 Getting Started with Mex-Files............. 471
A.2.2 Working with Matrices and Arrays in Mex-Files 474
A.2.3 Character Strings in Mex-Files 476
A.2.4 Cell Arrays with Mex-Files.......... ... 477
A.2.5 Structures with Mex-Files............ 479
A.2.6 Sparse Matrices with Mex-Files........... 481
A.2.7 Calling Other Functions in Mex-Files 484

A.3 Standalone Programs 486

Appendix B Test and Demo Functions.................. 487
Bl Test FUNCLIONSo 487
B.2 Demonstration Functions........... 491

Appendix C Tips and Standards........................ 495
C.1 Writing Clean Octave Programs., 495
C.2 Tips for Making Code Run Faster. 495
C.3 Tips on Writing COmMMENtSttt e e 496
C.4 Conventional Headers for Octave Functions 496

C.5 Tips for Documentation Strings................o i 498

Appendix D Known Causes of Trouble.................. 503
D.1 Actual Bugs We Haven’t Fixed Yet 503
D.2 Reporting Bugs.ot 503
D.3 Have You Found a Bug?...... 503
D.4 Where to Report Bugs ... 504
D.5 How to Report Bugso 504
D.6 Sending Patches for Octave. 505
D.7 How To Get Help with Octave......... 506

Appendix E Installing Octave.......................... 507
E.1 Installation Problems. 509

Appendix F Emacs Octave Support 513
F.1 Inmstalling EOS . ..o 513
F.2 Using Octave Mode e 513
F.3 Running Octave From Within Emacs......... 516
F.4 Using the Emacs Info Reader for Octave 518

Appendix G GNU GENERAL PUBLIC LICENSE 519

Concept Indexoiiiiiiiii it itiieneennennns 529

Variable Index 533

Function Indexoi i, 535

Operator Index ...t iiinnennenn. 547

GNU Octave

Preface

Octave was originally intended to be companion software for an undergraduate-level textbook
on chemical reactor design being written by James B. Rawlings of the University of Wisconsin-
Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited utility
beyond the classroom. Although our initial goals were somewhat vague, we knew that we wanted
to create something that would enable students to solve realistic problems, and that they could
use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes and
not enough time learning about chemical engineering. With Octave, most students pick up the
basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department at
the University of Texas, and the math department at the University of Texas has been using it
for teaching differential equations and linear algebra as well. If you find it useful, please let us
know. We are always interested to find out how Octave is being used in other places.

Virtually everyone thinks that the name Octave has something to do with music, but it is
actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to do
more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix G [Copying], page 519) as described at the beginning
of this manual. You are also encouraged to help make Octave more useful by writing and
contributing additional functions for it, and by reporting any problems you may have.

Acknowledgements

Many people have already contributed to Octave’s development. The following people have
helped write parts of Octave or helped out in various other ways (listed alphabetically).

Ben Abbott Andy Adler Joel Andersson
Muthiah Annamalai Shai Ayal Roger Banks

Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Karl Berry David Billinghurst

Don Bindner
Marcus Brinkmann
Daniel Calvelo
Joao Cardoso
Vincent Cautaerts
J. D. Cole

Jeff Cunningham
Philippe Defert
Pascal A. Dupuis
Paul Eggert

Rolf Fabian
Torsten Finke
Eduardo Gallestey
Driss Ghaddab

Jakub Bogusz
Remy Bruno
John C. Campbell
Larrie Carr
Clinton Chee
Martin Costabel
Martin Dalecki
Bill Denney

John W. Eaton
Stephen Eglen
Stephen Fegan
Jose Daniel Munoz Frias
Walter Gautschi
Nicolo Giorgetti

Moritz Borgmann
Marco Caliari
Jean-Francois Cardoso
David Castelow
Albert Chin-A-Young
Michael Creel

Jorge Barros de Abreu
David M. Doolin

Dirk Eddelbuettel
Peter Ekberg

Ramon Garcia Fernandez
Castor Fu

Klaus Gebhardt
Michael Goffioul

Glenn Golden
Etienne Grossmann
William P. Y. Hadisoeseno
Soren Hauberg
Roman Hodek

Tom Holroyd
Christopher Hulbert
Alan W. Irwin

Cai Jianming
Atsushi Kajita

Joel Keay

Aaron A. King
Heine Kolltveit
Piotr Krzyzanowski
Rafael Laboissiere
Walter Landry
Maurice LeBrun
Ross Lippert
Massimo Lorenzin
Jens-Uwe Mager
Makoto Matsumoto
Christoph Mayer
Kai P. Mueller
Todd Neal

Takuji Nishimura
Thorsten Ohl

Scott Pakin

Per Persson
Nicholas Piper
Orion Poplawski
Francesco Potorti
Balint Reczey
Matthew W. Roberts
Kevin Ruland
Juhani Saastamoinen
Michel D. Schmid
Ludwig Schwardt
Baylis Shanks
Julius Smith
Quentin H. Spencer
Russell Standish
John Swensen
Duncan Temple Lang
Utkarsh Upadhyay
James R. Van Zandt
Thomas Walter

Bob Weigel

Fook Fah Yap

Alex Zvoleff

Tomislav Goles
Peter Gustafson
Benjamin Hall
Daniel Heiserer

A. Scottedward Hodel
David Hoover

Cyril Humbert
Geoff Jacobsen
Steven G. Johnson
Mohamed Kamoun
Mumit Khan

Arno J. Klaassen
Ken Kouno

Volker Kuhlmann
Kai Labusch

Bill Lash

Friedrich Leisch
David Livings
Hoxide Ma

Ricardo Marranita
Laurent Mazet
Stefan Monnier
Victor Munoz

Al Niessner

Eric Norum

Arno Onken
Gabriele Pannocchia
Jim Peterson

Hans Ekkehard Plesser
Ondrej Popp

James B. Rawlings
Michael Reifenberger
Andrew Ross

Olli Saarela

Ben Sapp

Nicol N. Schraudolph
Daniel J. Sebald
Joseph P. Skudlarek
Shan G. Smith
Christoph Spiel
Doug Stewart

Ariel Tankus

Olaf Till

Stefan van der Walt
Gregory Vanuxem
Olaf Weber

Andreas Weingessel
Michael Zeising

GNU Octave

Keith Goodman
Kai Habel

Kim Hansen

Yozo Hida

Richard Allan Holcombe
Kurt Hornik
Teemu Tkonen
Mats Jansson
Heikki Junes

Lute Kamstra

Paul Kienzle
Geoffrey Knauth
Oyvind Kristiansen
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie
Benjamin Lindner
Erik de Castro Lopo
James Macnicol
Orestes Mas

G. D. McBain
Antoine Moreau
Carmen Navarrete
Rick Niles

Michael O’Brien
Luis F. Ortiz
Sylvain Pelissier
Danilo Piazzalunga
Tom Poage

Jef Poskanzer

Eric S. Raymond
Petter Risholm
Mark van Rossum
Toni Saarela

Alois Schloegl
Sebastian Schubert
Dmitri A. Sergatskov
John Smith

Joerg Specht
Richard Stallman
Thomas Stuart
Georg Thimm
Thomas Treichl
Peter Van Wieren
Ivana Varekova
Thomas Weber
Michael Weitzel
Federico Zenith

Special thanks to the following people and organizations for supporting the development of

Octave:

e The United States Department of Energy, through grant number DE-FG02-04ER25635.

e Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

e The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

e The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCCQC).

e The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of Wisconsin-
Madison.

e Digital Equipment Corporation, for an equipment grant as part of their External Research
Program.

e Sun Microsystems, Inc., for an Academic Equipment grant.

e International Business Machines, Inc., for providing equipment as part of a grant to the
University of Texas College of Engineering.

e Texaco Chemical Company, for providing funding to continue the development of this soft-
ware.

e The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

e The State of Texas, for providing funding through the Texas Advanced Technology Program
under Grant No. 003658-078.

e Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

e John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National Lab-
oratory, for registering the octave.org domain name.

e James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chemical
and Biological Engineering.

e Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and used to
produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving new
problems, and to make your code freely available for others to use.

If you find Octave useful, consider providing additional funding to continue its development.
Even a modest amount of additional funding could make a significant difference in the amount
of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better and
more reliable by reporting any bugs you find and by offering suggestions for ways to improve
Octave. See Appendix D [Trouble], page 503, for tips on how to write useful bug reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute it
on certain conditions. Octave is not in the public domain. It is copyrighted and there are
restrictions on its distribution, but the restrictions are designed to ensure that others will have
the same freedom to use and redistribute Octave that you have. The precise conditions can
be found in the GNU General Public License that comes with Octave and that also appears in
Appendix G [Copying], page 519.

http://www.che.utexas.edu/twmcc
octave.org

4 GNU Octave

Octave is available on CD-ROM with various collections of other free software, and from the
Free Software Foundation. Ordering a copy of Octave from the Free Software Foundation helps
to fund the development of more free software. For more information, write to

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301-1307
USA

Octave can also be downloaded from http://wuw.octave.org, where additional information
also is available.

http://www.octave.org

Chapter 1: A Brief Introduction to Octave 5

1 A Brief Introduction to Octave

This manual documents how to install, run, and use GNU Octave, and how to report bugs.

GNU Octave is a high-level language, primarily intended for numerical computations. It
provides a convenient command line interface for solving linear and nonlinear problems numeri-
cally, and for performing other numerical experiments. It may also be used as a batch-oriented
language.

GNU Octave is also freely redistributable software. You may redistribute it and/or mod-
ify it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix G [Copying|, page 519.

This document corresponds to Octave version 2.9.18.

1.1 Running Octave

On most systems, the way to invoke Octave is with the shell command ‘octave’. Octave displays
an initial message and then a prompt indicating it is ready to accept input. You can begin typing
Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (usually written
C-c for short). C-c gets its name from the fact that you type it by holding down and
then pressing (o). Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP signal,
usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it might
be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning Octave
by using it. Lines marked with ‘octave:13>’ are lines you type, ending each with a carriage
return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Creating a Matrix

To create a new matrix and store it in a variable so that it you can refer to it later, type the
command

octave:1> A = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Ending a command with
a semicolon tells Octave to not print the result of a command. For example

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero and
one.

To display the value of any variable, simply type the name of the variable. For example, to
display the value stored in the matrix B, type the command

octave:3> B

1.2.2 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example, to
multiply the matrix a by a scalar value, type the command

6 GNU Octave

octave:4> 2 x A

To multiply the two matrices a and b, type the command
octave:5> A x B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.3 Solving Linear Equations
To solve the set of linear equations Ax = b, use the left division operator, ‘\’:
octave:7> A \ b
This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

1.2.4 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

%:f(x,t), x(t=tg) = xo

For Octave to integrate equations of this form, you must first provide a definition of the function
f(z,t). This is straightforward, and may be accomplished by entering the function body directly
on the command line. For example, the following commands define the right hand side function
for an interesting pair of nonlinear differential equations. Note that while you are entering a
function, Octave responds with a different prompt, to indicate that it is waiting for you to
complete your input.

octave:8> function xdot = f (x, t)

00 o KR
O O O = = O
=
[0)}

xdot (1)
xdot (2)

r*x(1)*(1 - x(1)/k) - axx(1)*x(2)/(1 + b*x(1));
cxa*xx (1) *x(2) /(1 + b*xx(1)) - d*x(2);

V VV V V V V V V.V

>
> endfunction

Given the initial condition
x0 = [1; 2];
and the set of output times as a column vector (note that the first output time corresponds to
the initial condition given above)
t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
x = 1lsode ("f", x0, t);
The function lsode uses the Livermore Solver for Ordinary Differential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55-64.

Chapter 1: A Brief Introduction to Octave 7

1.2.5 Producing Graphical Output
To display the solution of the previous example graphically, use the command
plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate window
to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For example,
print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot. The command
help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.6 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs- or
vi-style editing commands. The default keybindings use Emacs-style commands. For example,
to recall the previous command, press Control-p (usually written C-p for short). Doing this
will normally bring back the previous line of input. C-n will bring up the next line of input, C-b
will move the cursor backward on the line, C-f will move the cursor forward on the line, etc.

A complete description of the command line editing capability is given in this manual in
Section 2.4 [Command Line Editing], page 16.

1.2.7 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed form
is also available from the Octave prompt, because both forms of the documentation are created
from the same input file.

In order to get good help you first need to know the name of the command that you want to
use. This name of the function may not always be obvious, but a good place to start is to just
type help. This will show you all the operators, reserved words, functions, built-in variables,
and function files. An alternative is to search the documentation using the lookfor function.
This function is described in Section 2.3 [Getting Help|, page 14.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or more.
Type a to advance one line, a to advance one page, and (g) to exit the pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke
Info you will be put into a menu driven program that contains the entire Octave manual. Help
for using Info is provided in this manual in Section 2.3 [Getting Help|, page 14.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may want
to skip this section and refer back to it later.

3 GNU Octave

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent arguments
or metasyntactic variables appear in this font or form: first-number. Commands that you type at
the shell prompt sometimes appear in this font or form: ‘octave —-no-init-file’. Commands
that you type at the Octave prompt sometimes appear in this font or form: foo --bar --baz.
Specific keys on your keyboard appear in this font or form: (ANY).

1.3.2 Evaluation Notation
In the examples in this manual, results from expressions that you evaluate are indicated with
‘=". For example,
sqrt (2)
= 1.4142
You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this
(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]
and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.
Sometimes to help describe one expression, another expression is shown that produces iden-
tical results. The exact equivalence of expressions is indicated with ‘=’. For example,
rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. Examples in this
manual indicate printed text with ¢ -’. The value that is returned by evaluating the expression
(here 1) is displayed with ‘= and follows on a separate line.
printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal. Error
messages are shown on a line starting with error:.

struct_elements ([1, 2; 3, 4])
error: struct_elements: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any. The
category—function, variable, or whatever—is printed next to the right margin. The description
follows on succeeding lines, sometimes with examples.

Chapter 1: A Brief Introduction to Octave 9

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is followed
on the same line by a list of parameters. The names used for the parameters are also used in
the body of the description.

Here is a description of an imaginary function foo:

foo (x,y,...) [Function]
The function foo subtracts x from y, then adds the remaining arguments to the result. If y
is not supplied, then the number 19 is used by default.
foo (1, [3, 5], 3, 9)
= [14, 16 1]
foo (5)
= 14
More generally,

foo (w, x, y, ...)

X -w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer, integerl or matrix)
is expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of the
function. In some sections, features common to parameters of several functions are described at
the beginning.

Functions in Octave may be defined in several different ways. The category name for functions
may include another name that indicates the way that the function is defined. These additional
tags include

Function File
The function described is defined using Octave commands stored in a text file. See
Section 11.7 [Function Files], page 113.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is part
of the compiled Octave binary.

Loadable Function
The function described is written in a language like C++, C, or Fortran. On systems
that support dynamic linking of user-supplied functions, it may be automatically
linked while Octave is running, but only if it is needed. See Appendix A [Dynami-
cally Linked Functions], page 445.

Mapping Function
The function described works element-by-element for matrix and vector arguments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command. Commands are functions that may be called without
surrounding their arguments in parentheses. For example, here is the description for Octave’s
cd command:

cd dir [Command|

chdir dir [Command|
Change the current working directory to dir. For example, cd ~/octave changes the current
working directory to ‘~/octave’. If the directory does not exist, an error message is printed
and the working directory is not changed.

10 GNU Octave

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the user,
built-in variables typically exist specifically so that users can change them to alter the way
Octave behaves (built-in variables are also sometimes called user options). Ordinary variables
and built-in variables are described using a format like that for functions except that there are
no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

do_what_i_mean_not_what_i_say [Built-in Variable]
If the value of this variable is nonzero, Octave will do what you actually wanted, even if you
have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot be
changed.

Chapter 2: Getting Started 11

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave session,
get help at the command prompt, edit the command line, and write Octave programs that can
be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any arguments.
Once started, Octave reads commands from the terminal until you tell it to exit.

You can also specify the name of a file on the command line, and Octave will read and execute
the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’ is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of all the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to print
a lot of information about the commands it reads, and is probably only useful if you
are actually trying to debug the parser.

—-—echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when done unless ——persist is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on the
command line will override any value of OCTAVE_EXEC_PATH found in the environ-
ment, but not any commands in the system or user startup files that set the built-in
variable EXEC_PATH.

--help
-h
-7 Print short help message and exit.

--image-path path
Specify the path to search for images. The value of path specified on the command
line will set the value of IMAGE_PATH found in the environment.

-—info-file filename
Specify the name of the info file to use. The value of filename specified on the com-
mand line will override any value of OCTAVE_INFO_FILE found in the environment,
but not any commands in the system or user startup files that use the info_file
function.

--info-program program
Specify the name of the info program to use. The value of program specified on
the command line will override any value of OCTAVE_INFO_PROGRAM found in the
environment, but not any commands in the system or user startup files that use the
info_program function.

12

GNU Octave

——-interactive

-i

Force interactive behavior. This can be useful for running Octave via a remote shell
command or inside an Emacs shell buffer. For another way to run Octave within
Emacs, see Appendix F [Emacs], page 513.

--no-history

-H Disable command-line history.
--no-init-file
Don’t read the ‘“/.octaverc’ or ‘.octaverc’ files.
--no-line-editing
Disable command-line editing.
--no-site-file
Don’t read the site-wide ‘octaverc’ file.
--norc
-f Don’t read any of the system or user initialization files at startup. This is equivalent
to using both of the options -——no-init-file and --no-site-file.
--path path
-p path Specify the path to search for function files. The value of path specified on the
command line will override any value of OCTAVE_PATH found in the environment,
but not any commands in the system or user startup files that set the internal load
path through one of the path functions.
--persist
Go to interactive mode after —-—eval or reading from a file named on the command
line.
-—-silent
--quiet
-q Don’t print the usual greeting and version message at startup.
-—traditional
-—braindead
For compatibility with MATLAB, set initial values for user-preferences to the follow-
ing values
PSl = ||>> n
PS2 = nn
beep_on_error = true
crash_dumps_octave_core = false
default_save_options = "-mat-binary"
fixed_point_format = true
history_timestamp_format_string
= "W%h== %D %L:%M hp —=h%"
page_screen_output = false
print_empty_dimensions = false
and disable the following warnings
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path
--verbose
-V Turn on verbose output.

Chapter 2: Getting Started 13

--version
-V Print the program version number and exit.

file Execute commands from file. Exit when done unless —-persist is also specified.

Octave also includes several built-in variables that contain information about the command
line, including the number of arguments and all of the options.

argv () [Built-in Function]
Return the command line arguments passed to Octave. For example, if you invoked Octave
using the command

octave --no-line-editing --silent

argv would return a cell array of strings with the elements --no-line-editing and --
silent.

If you write an executable Octave script, argv will return the list of arguments passed to
the script. See Section 2.6 [Executable Octave Programs|, page 23, for an example of how to
create an executable Octave script.

program_name () [Built-in Function]
Return the last component of of the value returned by program_invocation_name.

See also: program_invocation_name.

program_invocation_name () [Built-in Function)]
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an executable
Octave script, the program name is set to the name of the script. See Section 2.6 [Executable
Octave Programs], page 23, for an example of how to create an executable Octave script.

See also: program_name.

Here is an example of using these functions to reproduce Octave’s command line.

printf ("%s", program_name ());
arg_list = argv ();
for i = 1l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

See Section 8.1 [Index Expressions|, page 81, for an explanation of how to properly index arrays
of strings and substrings in Octave, and See Section 11.1 [Defining Functions], page 107, for
information about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list. These
files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
Where octave-home is the directory in which all of Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave envi-
ronment can be made globally for all users at your site for all versions of Octave you
have installed. Some care should be taken when making changes to this file, since
all users of Octave at your site will be affected.

14 GNU Octave

octave-home/share/octave/version/m/startup/octaverc
Where octave-home is the directory in which all of Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is provided so
that changes to the default Octave environment can be made globally for all users
for a particular version of Octave. Some care should be taken when making changes
to this file, since all users of Octave at your site will be affected.

~/.octaverc
This file is normally used to make personal changes to the default Octave environ-
ment.

.octaverc
This file can be used to make changes to the default Octave environment for a
particular project. Octave searches for this file in the current directory after it
reads ‘~/.octaverc’. Any use of the cd command in the ‘“/.octaverc’ file will
affect the directory that Octave searches for the file ‘. octaverc’.

If you start Octave in your home directory, commands from from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with the
--verbose option but without the --silent option.

2.2 Quitting Octave

exit (status) [Built-in Function]

quit (status) [Built-in Function)]
Exit the current Octave session. If the optional integer value status is supplied, pass that
value to the operating system as the Octave’s exit status. The default value is zero.

atexit (fcn) [Built-in Function]
Register a function to be called when Octave exits. For example,
function bye_bye (O
disp ("Bye bye");
endfunction
atexit ("bye_bye");
will print the message "Bye bye" when Octave exits.
atexit (fcn, flag) [Built-in Function]
Register or unregister a function to be called when Octave exits, depending on flag. If flag is
true, the function is registered, if flag is false, it is unregistered. For example, after registering
the function bye_bye as above,
atexit ("bye_bye", false);

will remove the function from the list and Octave will not call the function bye_by when it
exits.

Note that atexit only removes the first occurrence of a function from the list, so if a function
was placed in the list multiple times with atexit, it must also be removed from the list
multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc. In
addition, the documentation for individual user-written functions and variables is also available
via the help command. This section describes the commands used for reading the manual and
the documentation strings for user-supplied functions and variables. See Section 11.7 [Function
Files], page 113, for more information about how to document the functions you write.

Chapter 2: Getting Started 15

help name [Command]
Display the help text for name. If invoked without any arguments, help prints a list of all
the available operators and functions.
For example, the command help help prints a short message describing the help command.
The help command can give you information about operators, but not the comma and semi-
colons that are used as command separators. To get help for those, you must type help
comma or help semicolon.

See also: doc, which, lookfor.

doc function_name [Command]
Display documentation for the function function_name directly from an on-line version of the
printed manual, using the GNU Info browser. If invoked without any arguments, the manual
is shown from the beginning.
For example, the command doc rand starts the GNU Info browser at this node in the on-line
version of the manual.

Once the GNU Info browser is running, help for using it is available using the command C-h.

See also: help.

lookfor str [Command]
lookfor -all str [Command]|
[fun, helpstring] = lookfor (str) [Function]

[fun, helpstring] lookfor (-all’, str) [Function]
Search for the string str in all of the functions found in the function search path. By default
lookfor searches for str in the first sentence of the help string of each function found. The
entire help string of each function found in the path can be searched if the ’-all’ argument is
supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the termi-
nal. Otherwise the output arguments fun and helpstring define the matching functions and
the first sentence of each of their help strings.

Note that the ability of lookfor to correctly identify the first sentence of the help of the
functions is dependent on the format of the functions help. All of the functions in Octave itself
will correctly find the first sentence, but the same can not be guaranteed for other functions.
Therefore the use of the -all’ argument might be necessary to find related functions that are
not part of Octave.

See also: help, which.

The following function can be used to change which programs are used for displaying the
documentation, and where the documentation can be found.

val = info_file () [Built-in Function]

old_val = info_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave info file. The default
value is "octave-home/info/octave.info", in which octave-home is the directory where
all of Octave is installed.

See also: info_program, doc, help, makeinfo_program.

val = info_program () [Built-in Function]
old_val = info_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the info program to run. The de-
fault value is "octave-home /libexec/octave/version/exec/arch/info" in which octave-
home is the directory where all of Octave is installed, version is the Octave version number,

16 GNU Octave

and arch is the system type (for example, 1686-pc-linux-gnu). The default initial value
may be overridden by the environment variable OCTAVE_INFO_PROGRAM, or the command line
argument --info-program NAME.

See also: info_file, doc, help, makeinfo_program.

val = makeinfo_program () [Built-in Function]

old_val = makeinfo_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the makeinfo program that
Octave runs to format help text containing Texinfo markup commands. The default initial
value is "makeinfo".

See also: info_file, info_program, doc, help.

val = suppress_verbose_help_message () [Built-in Function]

old_val = suppress_verbose_help_message (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will add additional help
information to the end of the output from the help command and usage messages for built-
in commands.

2.4 Command Line Editing

Octave uses the GNU readline library to provide an extensive set of command-line editing and
history features. Only the most common features are described in this manual. Please see The
GNU Readline Library manual for more information.

To insert printing characters (letters, digits, symbols, etc.), simply type the character. Octave
will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For example,
the character Control-a moves the cursor to the beginning of the line. To type C-a, hold down
and then press @. In the following sections, control characters such as Control-a are
written as C-a.

Another set of command-line editing functions use Meta characters. On some terminals, you
type M-u by holding down and pressing (. If your terminal does not have a key,
you can still type Meta characters using two-character sequences starting with ESC. Thus, to
enter M-u, you could type ESC)@). The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written as
M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

DEL Delete the character to the left of the cursor.
c-d Delete the character underneath the cursor.
M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

Cc-1 Clear the screen, reprinting the current line at the top.

Chapter 2: Getting Started 17

C-_
c-/ Undo the last thing that you did. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command enough

times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to do
editing of the input line. On most terminals, you can also use the arrow keys in place of C-f
and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on words.

The function clc will allow you to clear the screen from within Octave programs.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually by
yanking it back into the line. If the description for a command says that it ‘kills’ text, then you
can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the end
of the next word.

M-(DEL) Kill from the cursor to the start of the previous word, or if between words, to the
start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-(DEL)
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one clean
sweep. The Kkill ring is not line specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a special

meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C—q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-(TAB) Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor, also
moving the cursor forward. If the cursor is at the end of the line, then transpose
the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving the
cursor over that word as well.

18 GNU Octave

M-u Uppercase the characters following the cursor to the end of the current (or following)
word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or following)
word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word if
the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You

The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete the
names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char () [Built-in Function]

old_val = completion_append_char (new_val) [Built-in Function]
Query or set the internal character variable that is appended to successful command-line
completion attempts. The default value is " " (a single space).

completion_matches (hint) [Built-in Function]

Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be controlling
Octave and handling user input. The current command number is not incremented when this
function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous commands
to edit or execute them again. When you exit Octave, the most recent commands you have typed,
up to the number specified by the variable history_size, are saved in a file. When Octave
starts, it loads an initial list of commands from the file named by the variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the line regardless of where the cursor is. If this line is non-empty, add it
to the history list. If this line was a history line, then restore the history line to its
original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M-< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the history
as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the history

as necessary.

On most terminals, you can also use the arrow keys in place of C-p and C-n to move through
the history list.

In addition to the keyboard commands for moving through the history list, Octave provides
three functions for viewing, editing, and re-running chunks of commands from the history list.

Chapter 2: Getting Started 19

history options [Command]
If invoked with no arguments, history displays a list of commands that you have executed.
Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the default
history file (normally ‘~/.octave_hist’).

-r file Read the file file, replacing the current history list with its contents. If the name
is omitted, use the default history file (normally ‘~/.octave_hist’).

n Only display the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and pasting
commands if you are using the X Window System.

For example, to display the five most recent commands that you have typed without display-
ing line numbers, use the command history -q 5.

edit_history options [Command|
If invoked with no arguments, edit_history allows you to edit the history list using the
editor named by the variable EDITOR. The commands to be edited are first copied to a
temporary file. When you exit the editor, Octave executes the commands that remain in
the file. It is often more convenient to use edit_history to define functions rather than
attempting to enter them directly on the command line. By default, the block of commands
is executed as soon as you exit the editor. To avoid executing any commands, simply delete
all the lines from the buffer before exiting the editor.

The edit_history command takes two optional arguments specifying the history numbers
of first and last commands to edit. For example, the command
edit_history 13
extracts all the commands from the 13th through the last in the history list. The command
edit_history 13 169
only extracts commands 13 through 169. Specifying a larger number for the first command

than the last command reverses the list of commands before placing them in the buffer to be
edited. If both arguments are omitted, the previous command in the history list is used.

run_history [first] [last] [Command]
Similar to edit_history, except that the editor is not invoked, and the commands are simply
executed as they appear in the history list.

Octave also allows you customize the details of how and where the history is saved.

val = history_file () [Built-in Function]

old_val = history_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used to store command
history. The default value is "~/.octave_hist", but may be overridden by the environment
variable OCTAVE_HISTFILE.

See also: history_size, saving_history, history_timestamp_format_string.

val = history_size () [Built-in Function]

old_val = history_size (new_val) [Built-in Function]
Query or set the internal variable that specifies how many entries to store in the history
file. The default value is 1024, but may be overridden by the environment variable OCTAVE_
HISTSIZE.

See also: history_file, history_timestamp_format, saving_history.

20 GNU Octave

val = saving_history () [Built-in Function]

old_val = saving_history (new_val) [Built-in Function]
Query or set the internal variable that controls whether commands entered on the command
line are saved in the history file.

See also: history_file, history_size, history_timestamp_format.

val = history_timestamp_format_string () [Built-in Function]

old_val = history_timestamp_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string for the comment line that
is written to the history file when Octave exits. The format string is passed to strftime.
The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USERQHOST>"

See also: strftime, history_file, history_size, saving_history.

val = EDITOR () [Built-in Function]

old_val = EDITOR (new_val) [Built-in Function]
Query or set the internal variable that specifies the editor to use with the edit_history
command. If the environment variable EDITOR is set when Octave starts, its value is used as
the default. Otherwise, EDITOR is set to "emacs".

See also: edit_history.

2.4.6 Customizing readline

As mentioned earlier Octave uses the GNU readline library for command-line editing and history
features. It is possible to customize how readline works through a configuration file.

read_readline_init_file (file) [Built-in Function]
Read the readline library initialization file file. If file is omitted, read the default initialization
file (normally ‘~/.inputrc’).

See section “Readline Init File” in GNU Readline Library, for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-escaped
special characters that are decoded as follows:

‘At’ The time.

\d’ The date.

“\n’ Begins a new line by printing the equivalent of a carriage return followed by a line
feed.

‘\s’ The name of the program (usually just ‘octave’).

Aw’ The current working directory.

AW The basename of the current working directory.

“Au’ The username of the current user.

‘\h’ The hostname, up to the first ©.’.

\H’ The hostname.

\# The command number of this command, counting from when Octave starts.

Chapter 2: Getting Started 21

ALY The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

¢’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

AN A backslash.

val = PS1 () [Built-in Function]

old_val = PS1 (new_val) [Built-in Function]

Query or set the primary prompt string. When executing interactively, Octave displays the
primary prompt when it is ready to read a command.
The default value of the primary prompt string is "\s:\#> ". To change it, use a command
like

octave:13> PS1 ("\\u@\\H> ")

which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in on the
host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a backslash into a
double-quoted character string. See Chapter 5 [Strings|, page 41.

See also: PS2, PS4.

val = PS2 () [Built-in Function]

old_val = PS2 (new_val) [Built-in Function]
Query or set the secondary prompt string. The secondary prompt is printed when Octave is
expecting additional input to complete a command. For example, if you are typing a for loop
that spans several lines, Octave will print the secondary prompt at the beginning of each line
after the first. The default value of the secondary prompt string is "> ".

See also: PS1, PS4.

val = PS4 () [Built-in Function]
old_val = PS4 (new_val) [Built-in Function]
Query or set the character string used to prefix output produced when echoing commands
when echo_executing_commands is enabled. The default value is "+ ". See Section 2.1

[Invoking Octave from the Command Line|, page 11, for a description of ~—echo-commands.

See also: echo_executing_commands, PS1, PS2.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by recording
the input you type and the output that Octave produces in a separate file.

diary options [Command|
Create a list of all commands and the output they produce, mixed together just as you see
them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working di-
rectory.

of f Stop recording your session in the diary file.

file Record your session in the file named file.

Without any arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being evaluated.
This can be especially helpful for debugging some kinds of problems.

22 GNU Octave

echo options [Command]
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.
off Disable echoing of commands as they are executed in script files.
on all Enable echoing of commands as they are executed in script files and functions.

off all Disable echoing of commands as they are executed in script files and functions.

If invoked without any arguments, echo toggles the current echo state.

val = echo_executing_commands () [Built-in Function]

old_val = echo_executing_commands (new_val) [Built-in Function]
Query or set the internal variable that controls the echo state. It may be the sum of the
following values:

1 Echo commands read from script files.
2 Echo commands from functions.
4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to the
command echo on all.

The value of echo_executing_commands is set by the echo command and the command line
option —--echo-input.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.

A parse error occurs if Octave cannot understand something you have typed. For example,
if you misspell a keyword,

octave:13> functon y = £ (x) y = x"2; endfunction
Octave will respond immediately with a message like this:

parse error:

functon y = £ (x) y = x”2; endfunction

~

~

For most parse errors, Octave uses a caret (‘~’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because the
keyword function was misspelled. Instead of seeing ‘function f’, Octave saw two consecutive
variable names, which is invalid in this context. It marked the error at y because the first name
by itself was accepted as valid input.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors because they occur when your program is being run, or
evaluated. For example, if after correcting the mistake in the previous function definition, you
type

octave:13> £ ()

Octave will respond with

error: ‘x’ undefined near line 1 column 24

error: evaluating expression near line 1, column 24

error: evaluating assignment expression near line 1, column 22
error: called from ‘f’

Chapter 2: Getting Started 23

This error message has several parts, and gives you quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error, and
provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be

undefined near line 1 and column 24 of some function or expression. For errors occurring within
functions, lines are counted from the beginning of the file containing the function definition.
For errors occurring at the top level, the line number indicates the input line number, which is
usually displayed in the prompt string.

The second and third lines in the example indicate that the error occurred within an assign-
ment expression, and the last line of the error message indicates that the error occurred within
the function f. If the function £ had been called from another function, for example, g, the list
of errors would have ended with one more line:

error: called from ‘g’

These lists of function calls usually make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using the
‘#1” script mechanism. You can do this on GNU systems and on many Unix systems®.

Self-contained Octave scripts are useful when you want to write a program which users can
invoke without knowing that the program is written in the Octave language.

For example, you could create a text file named ‘hello’, containing the following lines:

#! octave-interpreter—-name -qf
a sample Octave program
printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full file name for your Octave bi-
nary). Note that this will only work if ‘#!” appears at the very beginning of the file. After
making this file executable (with the chmod command), you can simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:
octave hello

The line beginning with ‘#!’ lists the full file name of an interpreter to be run, and an optional
initial command line argument to pass to that interpreter. The operating system then runs the
interpreter with the given argument and the full argument list of the executed program. The
first argument in the list is the full file name of the Octave program. The rest of the argument
list will either be options to Octave, or data files, or both. The ‘-=qf’ option is usually specified
in stand-alone Octave programs to prevent them from printing the normal startup message,
and to keep them from behaving differently depending on the contents of a particular user’s
‘~/.octaverc’ file. See Section 2.1 [Invoking Octave from the Command Line|, page 11.

Note that some operating systems may place a limit on the number of characters that are
recognized after ‘#!’. Also, the various shells/systems parse differently the arguments appearing
in a ‘#!’ line. The majority of them group together all the arguments in a string and pass it to
the interpreter as a single argument. In this case, the following script:

#! octave-interpreter—-name -q -f # comment

is equivalent to type at the command line:

1 The ‘#!" mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

24 GNU Octave

octave "-q -f # comment"

which would obviously produce an error message. Unfortunately, it is impossible for Octave to
know whether it has been called from the command line or from a ‘#!’ script, so some care is
needed when using the ‘#!” mechanism.

Note that when Octave is started from an executable script, the built-in function argv returns
a cell array containing the command line arguments passed to an executable Octave script, not
the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For example, the
following program will reproduce the command line that is used to execute script, not ‘-qf’.

#! /bin/octave -qf
printf ("¥s", program_name ());
arg_list = argv ();
for i = l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and that
is not really part of the program. Comments can explain what the program does, and how it
works. Nearly all programming languages have provisions for comments, because programs are
typically hard to understand without them.

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. The Octave interpreter ignores the rest
of a line following a sharp sign or percent symbol. For example, we could have put the following
into the function f:

function xdot = f (x, t)
usage: f (x, t)
This function defines the right hand

side functions for a set of nonlinear
differential equations.

H H HF H R

r = 0.25;

endfunction
The help command (see Section 2.3 [Getting Help], page 14) is able to find the first block
of comments in a function (even those that are composed directly on the command line). This
means that users of Octave can use the same commands to get help for built-in functions, and for
functions that you have defined. For example, after defining the function £ above, the command
help f produces the output

usage: f (x, t)

This function defines the right hand
side functions for a set of nonlinear
differential equations.

Although it is possible to put comment lines into keyboard-composed throw-away Octave
programs, it usually isn’t very useful, because the purpose of a comment is to help you or
another person understand the program at a later time.

Chapter 3: Data Types 25

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex scalars
and matrices, character strings, a data structure type, and an array that can contain all data
types.

It is also possible to define new specialized data types by writing a small amount of C++ code.
On some systems, new data types can be loaded dynamically while Octave is running, so it is
not necessary to recompile all of Octave just to add a new type. See Appendix A [Dynamically
Linked Functions|, page 445, for more information about Octave’s dynamic linking capabilities.
Section 3.2 [User-defined Data Types|, page 26 describes what you must do to define a new data
type for Octave.

typeinfo (expr) [Built-in Function]
Return the type of the expression expr, as a string. If EXPR is omitted, return an array of
strings containing all the currently installed data types.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, character
strings, a data structure type, and cell arrays. Additional built-in data types may be added in
future versions. If you need a specialized data type that is not currently provided as a built-
in type, you are encouraged to write your own user-defined data type and contribute it for
distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the following
functions.

class (expr) [Built-in Function]
Return the class of the expression expr, as a string.

isa (x, class) [Function File]
Return true if x is a value from the class class.

cast (val, type) [Function File]
Convert val to data type type.

See also: int8, uint&, int16, uint16, int32, uint32, int64, uint64, double.

typecast (x, type) [Loadable Function)]

Converts from one datatype to another without changing the underlying data. The argument
type defines the type of the return argument and must be one of 'uint8’, 'uint16’, 'uint32’,
‘uint64’, ’int8’; 'int16’, ’int32’, ’int64’, 'single’ or ’double’.
An example of the use of typecast on a little-endian machine is

x = uint16 ([1, 65535]);

typecast (x, ’uint8’)

= [0, 1, 255, 255]

See also: cast, swapbytes.

swapbytes (x) [Function File]
Swaps the byte order on values, converting from little endian to big endian and visa-versa.
For example
swapbytes (uint16 (1:4))
= [256 512 768 1024]

See also: typecast, cast.

26 GNU Octave

3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices. All
built-in floating point numeric data is currently stored as double precision numbers. On systems
that use the IEEE floating point format, values in the range of approximately 2.2251 x 1073%
to 1.7977 x 103% can be stored, and the relative precision is approximately 2.2204 x 107!¢. The
exact values are given by the variables realmin, realmax, and eps, respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is easy to
extract individual rows, columns, or submatrices using a variety of powerful indexing features.
See Section 8.1 [Index Expressions|, page 81.

See Chapter 4 [Numeric Data Types], page 29, for more information.

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Available”).
Missing data can only be represented when data is represented as floating point numbers. In
this case missing data is represented as a special case of the representation of NaN.

NA (x) [Built-in Function]
NA (n, m) [Built-in Function]
NA (n,m k, ...) [Built-in Function]
NA (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all equal to the special constant
used to designate missing values.

isna (x) [Mapping Function]
Return 1 for elements of x that are NA (missing) values and zero otherwise. For example,

isna ([13, Inf, NA, NaN])
j [O’ O’ 1, o]

3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-quote
or single-quote marks. Internally, Octave currently stores strings as matrices of characters. All
the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings|, page 41, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types. The
current implementation uses an associative array with indices limited to strings, but the syntax
is more like C-style structures.

See Section 6.1 [Data Structures|, page 55, for more information.

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays|, page 62, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism for
managing user-defined data types. Until this feature is documented here, you will have to make
do by reading the code in the ‘ov.h’, ‘ops.h’; and related files from Octave’s ‘src’ directory.

Chapter 3: Data Types 27

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make sense.
For example, Octave’s data structure type doesn’t have rows or columns, so the rows and
columns functions return —1 for structure arguments.

ndims (a) [Built-in Function]
Returns the number of dimensions of array a. For any array, the result will always be larger
than or equal to 2. Trailing singleton dimensions are not counted.

columns (a) [Built-in Function]
Return the number of columns of a.

See also: size, numel, rows, length, isscalar, isvector, and ismatrix.

rows (a) [Built-in Function]
Return the number of rows of a.

See also: size, numel, columns, length, isscalar, isvector, ismatrix.

numel (a) [Built-in Function]
Returns the number of elements in the object a.

See also: size.

length (a) [Built-in Function]
Return the ‘length’ of the object a. For matrix objects, the length is the number of rows or
columns, whichever is greater (this odd definition is used for compatibility with MATLAB).

size (a, n) [Built-in Function]
Return the number rows and columns of a.
With one input argument and one output argument, the result is returned in a row vector.
If there are multiple output arguments, the number of rows is assigned to the first, and the
number of columns to the second, etc. For example,
size ([1, 2; 3, 4; 5, 6])
= [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2
If given a second argument, size will return the size of the corresponding dimension. For
example
size ([1, 2; 3, 4; 5, 6], 2)
= 2

returns the number of columns in the given matrix.

See also: numel.

isempty (a) [Built-in Function]
Return 1 if a is an empty matrix (either the number of rows, or the number of columns, or
both are zero). Otherwise, return 0.

28 GNU Octave

sizeof (val) [Built-in Function]
Return the size of val in bytes

size_equal (a, b, ...) [Built-in Function]
Return true if the dimensions of all arguments agree. Trailing singleton dimensions are
ignored.

See also: size, numel.

squeeze (x) [Built-in Function]
Remove singleton dimensions from x and return the result. Note that for compatibility with
MATLAB, all objects have a minimum of two dimensions and row vectors are left unchanged.

Chapter 4: Numeric Data Types 29

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex values.

The simplest form of a numeric constant, a scalar, is a single number that can be an integer,
a decimal fraction, a number in scientific (exponential) notation, or a complex number. Note
that by default numeric constants are represented within Octave in double-precision floating
point format (complex constants are stored as pairs of double-precision floating point values).
It is however possible to represent real integers as described in Section 4.3 [Integer Data Types],
page 33. Here are some examples of real-valued numeric constants, which all have the same
value:

105
1.05e+2
1050e-1

To specify complex constants, you can write an expression of the form

3 + 4i
3.0 + 4.0
0.3el + 40e-11i

all of which are equivalent. The letter ‘i’ in the previous example stands for the pure imaginary
constant, defined as /—1.

For Octave to recognize a value as the imaginary part of a complex constant, a space must
not appear between the number and the ‘i’. If it does, Octave will print an error message, like
this:

octave:13> 3 + 4 i
parse error:

3+41i

You may also use ‘j’, ‘I’, or ‘J” in place of the ‘i’ above. All four forms are equivalent.

double (x) [Built-in Function]
Convert x to double precision type.

single (val) [Function File]
Convert the numeric value val to single precision.

Note: this function currently returns its argument converted to double precision because
Octave does not yet have a single-precision numeric data type.

complex (val) [Built-in Function]
complex (re, im) [Built-in Function]
Convert x to a complex value.

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined automat-
ically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
1 2
3 4

results in the matrix

S
I
—

30 GNU Octave

Elements of a matrix may be arbitrary expressions, provided that the dimensions all make
sense when combining the various pieces. For example, given the above matrix, the expression

[a, a]

produces the matrix

ans =
1 2 1 2
3 4 3 4
but the expression
[a, 1]

produces the error
error: number of rows must match near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the surrounding
context to determine whether spaces and newline characters should be converted into element
and row separators, or simply ignored, so an expression like

a=[12
34]
will work. However, some possible sources of confusion remain. For example, in the expression
[1-11]
the ‘=’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]
the ‘=’ is treated as a unary operator and the result is the vector [1, -1]. Similarly, the
expression
[sin (pi) 1]

will be parsed as
[sin, (pi)]
and will result in an error since the sin function will be called with no arguments. To get

around this, you must omit the space between sin and the opening parenthesis, or enclose the
expression in a set of parentheses:

[(sin (pi)) 1

Whitespace surrounding the single quote character (‘’’, used as a transpose operator and for
delimiting character strings) can also cause confusion. Given a = 1, the expression

[1a]
results in the single quote character being treated as a transpose operator and the result is the
vector [1, 171, but the expression

[1a’]
produces the error message

error: unterminated string constant
because not doing so would cause trouble when parsing the valid expression

[a ’foo’ 1]

For clarity, it is probably best to always use commas and semicolons to separate matrix

elements and rows.

When you type a matrix or the name of a variable whose value is a matrix, Octave responds
by printing the matrix in with neatly aligned rows and columns. If the rows of the matrix are

Chapter 4: Numeric Data Types 31

too large to fit on the screen, Octave splits the matrix and displays a header before each section
to indicate which columns are being displayed. You can use the following variables to control
the format of the output.

val = output_max_field_width () [Built-in Function]

old_val = output_max_field_width (new_val) [Built-in Function]
Query or set the internal variable that specifies the maximum width of a numeric output
field.

See also: format, output_precision.

val = output_precision () [Built-in Function]

old_val = output_precision (new_val) [Built-in Function]
Query or set the internal variable that specifies the minimum number of significant figures
to display for numeric output.

See also: format, output_max_field_width.

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 137.

val = split_long_rows () [Built-in Function]

old_val = split_long_rows (new_val) [Built-in Function]
Query or set the internal variable that controls whether rows of a matrix may be split when
displayed to a terminal window. If the rows are split, Octave will display the matrix in a
series of smaller pieces, each of which can fit within the limits of your terminal width and each
set of rows is labeled so that you can easily see which columns are currently being displayed.
For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

Octave automatically switches to scientific notation when values become very large or very
small. This guarantees that you will see several significant figures for every value in a matrix.
If you would prefer to see all values in a matrix printed in a fixed point format, you can set the
built-in variable fixed_point_format to a nonzero value. But doing so is not recommended,
because it can produce output that can easily be misinterpreted.

val = fixed_point_format () [Built-in Function]

old_val = fixed_point_format (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will use a scaled format to
print matrix values such that the largest element may be written with a single leading digit
with the scaling factor is printed on the first line of output. For example,

32 GNU Octave

octave:1> logspace (1, 7, 5)’
ans =

1.0e+07 x*

.00000
.00003
.00100
.03162
1.00000

Notice that first value appears to be zero when it is actually 1. For this reason, you should
be careful when setting fixed_point_format to a nonzero value.

O O O O

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are handled
as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages 2-6, 1990 and
C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realization of the Empty
Matrix Concept, IEEE Transactions on Automatic Control, Volume 38, Number 5, May 1993.
Briefly, given a scalar s, an m X n matrix M,,,, and an m X n empty matrix [],,x, (with either
one or both dimensions equal to zero), the following are true:

$ [Jmxn = [Imxn = 5 = [Jmxn
mxn + [Jmxn = [mxn
[Joxm * Minxn = [Joxn
Mm><n . ano - meo

[Jmnxo - [loxn = Omxn

By default, dimensions of the empty matrix are printed along with the empty matrix symbol,
‘[1°. The built-in variable print_empty_dimensions controls this behavior.

val = print_empty_dimensions () [Built-in Function]

old_val = print_empty_dimensions (new_val) [Built-in Function]
Query or set the internal variable that controls whether the dimensions of empty matrices
are printed along with the empty matrix symbol, ‘[1’. For example, the expression

zeros (3, 0)
will print
ans = [](3x0)

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions|, page 88.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will not
exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and may
contain any arithmetic expressions and function calls. If the increment is omitted, it is assumed
to be 1. For example, the range

Chapter 4: Numeric Data Types 33

1:5
defines the set of values ‘[1, 2, 3, 4, 51]’, and the range
1 :3:5

defines the set of values ‘[1, 4 1.

Although a range constant specifies a row vector, Octave does not convert range constants
to vectors unless it is necessary to do so. This allows you to write a constant like ‘1 : 10000’
without using 80,000 bytes of storage on a typical 32-bit workstation.

Note that the upper (or lower, if the increment is negative) bound on the range is not always
included in the set of values, and that ranges defined by floating point values can produce
surprising results because Octave uses floating point arithmetic to compute the values in the
range. If it is important to include the endpoints of a range and the number of elements is
known, you should use the linspace function instead (see Section 16.4 [Special Utility Matrices],
page 203).

When Octave parses a range expression, it examines the elements of the expression to deter-
mine whether they are all constants. If they are, it replaces the range expression with a single
range constant.

4.3 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible to
use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be noted
that most computations require floating point data, meaning that integers will often change type
when involved in numeric computations. For this reason integers are most often used to store
data, and not for calculations.
In general most integer matrices are created by casting existing matrices to integers. The
following example shows how to cast a matrix into 32 bit integers.
float = rand (2, 2)
= float = 0.37569 0.92982
0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.

isinteger (x) [Built-in Function]
Return true if x is an integer object (int8, uint8, int16, etc.). Note that isinteger (14) is
false because numeric constants in are double precision floating point values.

See also: isreal, isnumeric, class, isa.

int8 (x) [Built-in Function]
Convert x to 8-bit integer type.

uint8 (x) [Built-in Function]
Convert x to unsigned 8-bit integer type.

int16 (x) [Built-in Function]
Convert x to 16-bit integer type.

uint16 (x) [Built-in Function]
Convert x to unsigned 16-bit integer type.

34 GNU Octave

int32 (x) [Built-in Function]
Convert x to 32-bit integer type.

uint32 (x) [Built-in Function]
Convert x to unsigned 32-bit integer type.

int64 (x) [Built-in Function]
Convert x to 64-bit integer type.

uint64 (x) [Built-in Function]
Convert x to unsigned 64-bit integer type.

intmax (type) [Built-in Function]
Return the largest integer that can be represented in an integer type. The variable type can
be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.
uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is uint32.

See also: intmin, bitmax.

intmin (type) [Built-in Function]
Return the smallest integer that can be represented in an integer type. The variable type
can be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.
uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is uint32.

See also: intmax, bitmax.

Chapter 4: Numeric Data Types 35

4.3.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support basic
operations like addition and multiplication on integers. The operators +, -, .*, and ./ works
on integers of the same type. So, it is possible to add two 32 bit integers, but not to add a 32
bit integer and a 16 bit integer.

The arithmetic operations on integers are performed by casting the integer values to double
precision values, performing the operation, and then re-casting the values back to the original
integer type. As the double precision type of Octave is only capable of representing integers with
up to 53 bits of precision, it is not possible to perform arithmetic of the 64 bit integer types.

When doing integer arithmetic one should consider the possibility of underflow and overflow.
This happens when the result of the computation can’t be represented using the chosen integer
type. As an example it is not possible to represent the result of 10 — 20 when using unsigned
integers. Octave makes sure that the result of integer computations is the integer that is closest
to the true result. So, the result of 10 — 20 when using unsigned integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32(5)./int32(8) is 1.

4.4 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by bit
basis. The basic functions to set and obtain the values of individual bits are bitset and bitget.

x = bitset (a, n) [Function File]
x = bitset (a, n, v) [Function File]
Set or reset bit(s) n of unsigned integers in a. v = 0 resets and v = 1 sets the bits. The
lowest significant bit is: n = 1
dec2bin (bitset (10, 1))
= 1011
See also: bitand, bitor, bitxor, bitget, bitcmp, bitshift, bitmax.
X = bitget (a,n) [Function File]

Return the status of bit(s) n of unsigned integers in a the lowest significant bit is n = 1.

bitget (100, 8:-1:1)
=0 1 1 0 0 1 0 O

See also: bitand, bitor, bitxor, bitset, bitcmp, bitshift, bitmax.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for bitcmp,
whose k argument must a scalar. In the case where more than one argument is an array, then
all arguments must have the same shape, and the bitwise operator is applied to each of the
elements of the argument individually. If at least one argument is a scalar and one an array,
then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as
bitget (100 * ones (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave are

treated as integers. Therefore, even though the example for bitset above passes the floating

point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the native floating
point format representation of 10.

As the maximum number that can be represented by a number is important for bit manipu-
lation, particularly when forming masks, Octave supplies the function bitmax.

36 GNU Octave

bitmax () [Built-in Function]
Return the largest integer that can be represented as a floating point value. On IEEE-754
compatiable systems, bitmax is 2753 - 1.

This is the double precision version of the functions intmax, previously discussed.

Octave also include the basic bitwise ’and’, or’ and ’exclusive or’ operators.

bitand (x, y) [Built-in Function]
Return the bitwise AND of nonnegative integers. x, y must be in range [0..bitmax]

See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.

bitor (x, y) [Built-in Function]
Return the bitwise OR of nonnegative integers. x, y must be in range [0..bitmax]

See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.

bitxor (x, y) [Built-in Function]
Return the bitwise XOR of nonnegative integers. x, y must be in range [0..bitmax]

See also: bitand, bitor, bitset, bitget, bitcmp, bitshift, bitmax.

The bitwise 'not’ operator is unary operator that performs a logial negation of each of the
bits of the value. For this to make sense, the mask against which the value is negated must be
defined. Octave’s bitwise 'not’ operator is bitcmp.

bitcmp (a, k) [Function File]
Return the k-bit complement of integers in a. If k is omitted k = log2 (bitmax) + 1 is
assumed.

bitcmp(7,4)

= 8

dec2bin(11)

= 1011
dec2bin(bitcmp (11, 6))
= 110100

See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
Octave also includes the ability to left and right values bitwise.

bitshift (a, k) [Built-in Function]

bitshift (a, k, n) [Built-in Function]
Return a k bit shift of n- digit unsigned integers in a. A positive k leads to a left shift. A
negative value to a right shift. If n is omitted it defaults to log2(bitmax)+1. n must be in
range [1,log2(bitmax)+1] usually [1,33]

bitshift (eye (3), 1)

OO[\)U
O N O
N O O

bitshift (10, [-2, -1, O, 1, 2])
= 2 5 10 20 40

See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitmax.

Chapter 4: Numeric Data Types 37

Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic shifts,
where the sign bit of the value is keep during a right shift. For example

bitshift (-10, -1)

= -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1, 1, 1, 1, 1, 1, 1].

4.5 Logical Values

Octave has built-in support for logical values, i.e. variables that are either true or false. When
comparing two variables, the result will be a logical value whose value depends on whether or
not the comparison is true.

The basic logical operations are &, |, and !, that corresponds to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the rules of logic.
It is also possible to use logical values as part of standard numerical calculations. In this case

true is converted to 1, and false to 0, both represented using double precision floating point
numbers. So, the result of true*22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with a
logical array the result will be a vector containing the values corresponding to true parts of the
logical array. The following example illustrates this.

data = [1, 2; 3, 4 1;
idx = (data <= 2);
data(idx)
= ans = [1; 4]
Instead of creating the idx array it is possible to replace data(idx) with data(data <=2) in
the above code.

Besides when doing comparisons, logical values can be constructed by casting numeric objects
to logical values, or by using the true or false functions.

logical (arg) [Function File]
Convert arg to a logical value. For example,

logical ([-1, 0, 11)
is equivalent to

[-1, 0, 1] =0

true (x) [Built-in Function]
true (n, m) [Built-in Function]
true (n, m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 1. The arguments are
handled the same as the arguments for eye.

false (x) [Built-in Function]
false (n, m) [Built-in Function]
false (n, m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 0. The arguments are
handled the same as the arguments for eye.

38 GNU Octave

4.6 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be necessary
to type checking at run-time. Doing this also allows you to change the behaviour of a function
depending on the type of the input. As an example, this naive implementation of abs returns
the absolute value of the input if it is a real number, and the length of the input if it is a complex
number.
function a = abs (x)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x)."2 + imag(x)."2);
endif
endfunction

The following functions are available for determining the type of a variable.

isnumeric (x) [Built-in Function]
Return nonzero if x is a numeric object.

isreal (x) [Built-in Function]
Return true if x is a real-valued numeric object.

iscomplex (x) [Built-in Function]
Return true if x is a complex-valued numeric object.

ismatrix (a) [Built-in Function]
Return 1 if a is a matrix. Otherwise, return 0.

isvector (a) [Function File]
Return 1 if a is a vector. Otherwise, return 0.

See also: size, rows, columns, length, isscalar, ismatrix.

isscalar (a) [Function File]
Return 1 if a is a scalar. Otherwise, return 0.

See also: size, rows, columns, length, isscalar, ismatrix.

issquare (x) [Function File]
If x is a square matrix, then return the dimension of x. Otherwise, return 0.

See also: size, rows, columns, length, ismatrix, isscalar, isvector.

issymmetric (x, tol) [Function File]
If x is symmetric within the tolerance specified by tol, then return the dimension of x.
Otherwise, return 0. If tol is omitted, use a tolerance equal to the machine precision.

See also: size, rows, columns, length, ismatrix, isscalar, issquare, isvector.

isdefinite (x, tol) [Function File]
Return 1 if x is symmetric positive definite within the tolerance specified by tol or 0 if x is
symmetric positive semidefinite. Otherwise, return -1. If tol is omitted, use a tolerance equal
to 100 times the machine precision.

See also: issymmetric.

Chapter 4: Numeric Data Types 39

islogical (x) [Built-in Function]
Return true if x is a logical object.

isprime (n) [Function File]
Return true if n is a prime number, false otherwise.
Something like the following is much faster if you need to test a lot of small numbers:
t = ismember (n, primes (max (n (:))));

If max(n) is very large, then you should be using special purpose factorization code.

See also: primes, factor, ged, lem.

40

GNU Octave

Chapter 5: Strings 41

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or single-
quote marks. For example, both of the following expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3 [Arithmetic
Ops|, page 85) but double-quote marks have no other purpose in Octave, it is best to use double-
quote marks to denote strings.

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character.

In single-quoted strings, backslash is not a special character.
Here is an example showing the difference

toascii ("\n")
= 10
toascii (’\n’)
= [92 110]
You may also insert a single quote character in a single-quoted string by using two single
quote characters in succession. For example,

’I can’’t escape’
= I can’t escape

Here is a table of all the escape sequences used in Octave. They are the same as those used
in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, <*’

\O Represents the “nul” character, control-@, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

Strings may be concatenated using the notation for defining matrices. For example, the
expression

["fOO" S Ilbarll s "baz"]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 29, for more information about creating matrices.

42 GNU Octave

5.1 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text in
double-quotes or single-quotes. It is however possible to create a string without actually writing
a text. The function blanks creates a string of a given length consisting only of blank characters

(ASCII code 32).

blanks (n) [Function File]
Return a string of n blanks.

See also: repmat.

The string representation used by Octave is an array of characters, so the result of blanks (10)
is actually a row vector of length 10 containing the value 32 in all places. This lends itself to
the obvious generalisation to character matrices. Using a matrix of characters, it is possible to
represent a collection of same-length strings in one variable. The convention used in Octave is
that each row in a character matrix is a separate string, but letting each column represent a
string is equally possible.

The easiest way to create a character matrix is to put several strings together into a matrix.
collection = ["String #1"; "String #2"];
This creates a 2-by-9 character matrix.

One relevant question is, what happens when character matrix is created from strings of
different length. The answer is that Octave puts blank characters at the end of strings shorter
than the longest string. While it is possible to use a different character than the blank character
using the string fill_char function, it shows a problem with character matrices. It simply
isn’t possible to represent strings of different lengths. The solution is to use a cell array of
strings, which is described in Section 6.2.3 [Cell Arrays of Strings|, page 66.

char (x) [Built-in Function]
char (cell_array) [Built-in Function]
char (s1,s2,...) [Built-in Function]

Create a string array from a numeric matrix, cell array, or list of

If the argument is a numeric matrix, each element of the matrix is converted to the corre-
sponding ASCII character. For example,

char ([97, 98, 99])
= "abc"

If the argument is a cell array of strings, the result is a string array with each element
corresponding to one element of the cell array.

For multiple string arguments, the result is a string array with each element corresponding
to the arguments.

The returned values are padded with blanks as needed to make each row of the string array
have the same length.

strcat (s1, s2,...) [Function File]
Return a string containing all the arguments concatenated. For example,
s = ["ab"; "cde" 1;
strcat (s, s, s)
= "ab ab ab "
"cdecdecde"

Chapter 5: Strings 43

strvcat (s_1, ..., s_n) [Function File]
Return a matrix containing the strings (and cell-strings) s_1, . .., s_n as its rows. Each string
is padded with blanks in order to form a valid matrix. Unlike str2mat, empty strings are
ignored.

See also: strcat, str2mat.

strtrunc (s, n) [Function File]
Truncate the character string s to length n. If s is a char matrix, then the number of columns
are adjusted.

If s is a cell array of strings, then the operation is performed on its members and the new
cell array is returned.

val = string_fill_char () [Built-in Function]
old_val = string_fill_char (new_val) [Built-in Function]
Query or set the internal variable used to pad all rows of a character matrix to the same
length. It must be a single character. The default value is " " (a single space). For example,
string_fill_char ("X");
["these"; "are"; "strings" 1]
= "theseXX"
"areXXXX"
"strings"
str2mat (s_1, ..., s_n) [Function File]
Return a matrix containing the strings s_1, ..., s_n as its rows. Each string is padded with

blanks in order to form a valid matrix.

This function is modelled after MATLAB. In Octave, you can create a matrix of strings by
[s_1; ...; s_n] even if the strings are not all the same length.

ischar (a) [Built-in Function]
Return 1 if a is a string. Otherwise, return 0.

s = mat2str (x, n) [Function File]

s = mat2str (..., 'class’) [Function File]
Format real/complex numerical matrices as strings. This function returns values that are
suitable for the use of the eval function.

The precision of the values is given by n. If n is a scalar then both real and imaginary parts
of the matrix are printed to the same precision. Otherwise n (1) defines the precision of the
real part and n (2) defines the precision of the imaginary part. The default for n is 17.

If the argument ’class’ is given, then the class of x is included in the string in such a way
that the eval will result in the construction of a matrix of the same class.

mat2str([-1/3 + i/7; 1/3 - i/7 1, [4 2])
= ’[-0.3333+0.14i;0.3333-0.141i]"’

mat2str([-1/3 +i/7; 1/3 -i/7 1, [4 2])
= ’[-0.3333+01,0+0.14i;0.3333+0i,-0-0.14i]°

mat2str(int16([1 -1]), ’class’)
= ’int16([1,-1]1)’

See also: sprintf, int2str.

44 GNU Octave

num2str (n) [Function File]
num2str (x, precision) [Function File]
num2str (x, format) [Function File]

Convert a number to a string. This function is not very flexible. For better control over the
results, use sprintf (see Section 14.2.4 [Formatted Output|, page 149).

See also: sprintf, int2str.

int2str (n) [Function File]
Convert an integer to a string. This function is not very flexible. For better control over the
results, use sprintf (see Section 14.2.4 [Formatted Output], page 149).

See also: sprintf, num2str.

5.2 Comparing Strings

Since a string is a character array comparison between strings work element by element as the
following example shows.

GNU = "GNU’s Not UNIX";
spaces = (GNU == " ")
= spaces =
o o o0 o0 ©0 1 0 0O O 1 O o o0 ©

To determine if two functions are identical it is therefore necessary to use the strcmp or strncpm
functions. Similar functions exist for doing case-insensitive comparisons.

strcmp (s1, s2) [Built-in Function]
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the character

strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library
function.

See also: strcmpi, strncmp, strncmpi.

strcmpi (si, s2) [Function File]
Ignoring case, return 1 if the character strings sI and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.

Caution: For compatibility with MATLAB, Octave’s strempi function returns 1 if the character
strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library
function.

See also: strcmp, strncmp, strncmpi.

strncmp (s1, s2, n) [Built-in Function]
Return 1 if the first n characters of strings s1 and s2 are the same, and 0 otherwise.

Chapter 5: Strings 45

strncmp ("abce", "abcd", 3)
=1
If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.
strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]
Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if the char-
acter strings are equal, and 0 otherwise. This is just the opposite of the corresponding C
library function.

See also: strncmpi, stremp, strempi.

strncmpi (si, s2, n) [Function File]
Ignoring case, return 1 if the first n characters of character strings sl and s2 are the same,
and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.

Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if the char-
acter strings are equal, and 0 otherwise. This is just the opposite of the corresponding C
library function.

See also: strcmp, strcmpi, strncmp.

5.3 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = ...

"First things first, but not necessarily in that order";
quote(quote == " ") = "_"
= quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular expres-
sions, the following functions come with Octave.

deblank (s) [Function File]
Remove trailing blanks and nulls from s. If s is a matrix, deblank trims each row to the
length of longest string. If s is a cell array, operate recursively on each element of the cell
array.

findstr (s, t, overlap) [Function File]
Return the vector of all positions in the longer of the two strings s and t where an occurrence
of the shorter of the two starts. If the optional argument overlap is nonzero, the returned
vector can include overlapping positions (this is the default). For example,

findstr ("ababab", "a"

= [1, 3, 5]

findstr ("abababa", "aba", 0)
= [1, 5]

46 GNU Octave

index (s, t) [Function File]

index (s, t, direction) [Function File]
Return the position of the first occurrence of the string ¢ in the string s, or 0 if no occurrence
is found. For example,

index ("Teststring", "t")
= 4

If direction is ‘"first"’, return the first element found. If direction is ‘"last"’, return the
last element found. The rindex function is equivalent to index with direction set to ‘"last"’.

Caution: This function does not work for arrays of character strings.

See also: find, rindex.

rindex (s, t) [Function File]
Return the position of the last occurrence of the character string t in the character string s,
or 0 if no occurrence is found. For example,

rindex ("Teststring", "t")
= 6

Caution: This function does not work for arrays of character strings.

See also: find, index.

idx = strfind (str, pattern) [Function File]

idx = strfind (cellstr, pattern) [Function File]
Search for pattern in the string str and return the starting index of every such occurrence in
the vector idx. If there is no such occurrence, or if pattern is longer than str, then idx is the
empty array [].

If the cell array of strings cellstr is specified instead of the string str, then idx is a cell array
of vectors, as specified above.

See also: findstr, strmatch, strcmp, strncmp, strempi, strncmpi.

strmatch (s, a, "exact") [Function File]
Return indices of entries of a that match the string s. The second argument a may be a string
matrix or a cell array of strings. If the third argument "exact" is not given, then s only
needs to match a up to the length of s. Nul characters match blanks. Results are returned
as a column vector.

[tok, rem] = strtok (str, delim) [Function File]
Find all characters up to but not including the first character which is in the string delim.
If rem is requested, it contains the remainder of the string, starting at the first deliminator.
Leading delimiters are ignored. If delim is not specified, space is assumed.

split (s, t, n) [Function File]
Divides the string s into pieces separated by t, returning the result in a string array (padded
with blanks to form a valid matrix). If the optional input n is supplied, split s into at most
n different pieces.

For example,
split ("Test string", "t")
= "Tes "
n s n
llringll

Chapter 5: Strings 47

split ("Test string", "t", 2)
= "Tes !
" string"

strrep (s, x, y) [Function File]

Replaces all occurrences of the substring x of the string s with the string y. For example,

strrep ("This is a test string", "is", "&%$")
= "Th&%$ &%$ a test string"

substr (s, offset, len) [Function File]

Return the substring of s which starts at character number offset and is len characters long.

If offset is negative, extraction starts that far from the end of the string. If len is omitted,
the substring extends to the end of S.

For example,

substr ("This is a test string", 6, 9)

= "is a test"
This function is patterned after AWK. You can get the same result by s (offset : (offset
+ len - 1)).

[s, e, te, m, t, nm] = regexp (str, pat) [Loadable Function)]

[...

1 = regexp (str, pat, opts, ...) [Loadable Function)]
Regular expression string matching. Matches pat in str and returns the position and matching
substrings or empty values if there are none.

The matched pattern pat can include any of the standard regex operators, including:
Match any character

* + 7 {} Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{3 Match range operator, which is of the form {n} to match exactly n

times, {m,} to match m or more times, {m,n} to match between m
and n times.

...1[...]

List operators, where for example [ab] c matches ac and bc
O Grouping operator

| Alternation operator. Match one of a choice of regular expressions. The alterna-
tives must be delimited by the grouping operator () above

" $ Anchoring operator. ~ matches the start of the string str and $ the end

In addition the following escaped characters have special meaning. It should be noted that it
is recommended to quote pat in single quotes rather than double quotes, to avoid the escape
sequences being interpreted by octave before being passed to regexp.

\b Match a word boundary
\B Match within a word

\w Matches any word character

48

GNU Octave
\W Matches any non word character
\< Matches the beginning of a word
\> Matches the end of a word
\s Matches any whitespace character
\S Matches any non whitespace character
\d Matches any digit
\D Matches any non-digit

The outputs of regexp by default are in the order as given below

S The start indices of each of the matching substrings

e The end indices of each matching substring

te The extents of each of the matched token surrounded by (...) in pat.

m A cell array of the text of each match.

t A cell array of the text of each token matched.

nm A structure containing the text of each matched named token, with the name

being used as the fieldname. A named token is denoted as (?<name>. . .)

Particular output arguments or the order of the output arguments can be selected by ad-
ditional opts arguments. These are strings and the correspondence between the output
arguments and the optional argument are

‘start’

‘end’

‘tokenExtents’ te
‘'match’ m
‘tokens’ t
‘names’ nm

A further optional argument is ’once’, that limits the number of returned matches to the first
match. Additional arguments are

matchcase Make the matching case sensitive.
ignorecase Make the matching case insensitive.

stringanchors
Match the anchor characters at the beginning and end of the string.

lineanchors
Match the anchor characters at the beginning and end of the line.

dotall The character . matches the newline character.

dotexceptnewline
The character . matches all but the newline character.

freespacing
The pattern can include arbitrary whitespace and comments starting with #.

literalspacing
The pattern is taken literally.

Chapter 5: Strings 49

[s, e, te, m, t, nm] = regexpi (str, pat) [Loadable Function]

[...] = regexpi (str, pat, opts, ...) [Loadable Function)]
Case insensitive regular expression string matching. Matches pat in str and returns the
position and matching substrings or empty values if there are none. See regexp for more
details

string = regexprep (string, pat, repstr, options) [Loadable Function]
Replace matches of pat in string with repstr.

The replacement can contain $i, which substitutes for the ith set of parentheses in the match
string. E.g.,

regexprep("Bill Dunn",’ (\w+) (\w+)’,’$2, $1°)

returns "Dunn, Bill"

options may be zero or more of

‘once’ Replace only the first occurrence of pat in the result.

‘warnings’
This option is present for compatibility but is ignored.

‘ignorecase or matchcase’
Ignore case for the pattern matching (see regexpi). Alternatively, use (?7i) or
(7-1) in the pattern.

‘lineanchors and stringanchors’
Whether characters ~ and $ match the beginning and ending of lines. Alterna-
tively, use (?m) or (?-m) in the pattern.

‘dotexceptnewline and dotall’

Whether . matches newlines in the string. Alternatively, use (7s) or (7-s) in the
pattern.

‘freespacing or literalspacing’
Whether whitespace and # comments can be used to make the regular expression
more readable. Alternatively, use (7x) or (7-x) in the pattern.

See also: regexp,regexpi.

5.4 String Conversions

Octave supports various kinds of conversions between strings and numbers. As an example, it
is possible to convert a string containing a hexadecimal number to a floating point number.
hex2dec ("FF")
= ans = 255

bin2dec (s) [Function File]
Return the decimal number corresponding to the binary number stored in the string s. For
example,

bin2dec ("1110")
= 14

If s is a string matrix, returns a column vector of converted numbers, one per row of s. Invalid
rows evaluate to NaN.

See also: dec2hex, base2dec, dec2base, hex2dec, dec2bin.

20 GNU Octave

dec2bin (n, len) [Function File]
Return a binary number corresponding the nonnegative decimal number n, as a string of ones
and zeros. For example,

dec2bin (14)
= "1110"

If n is a vector, returns a string matrix, one row per value, padded with leading zeros to the
width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the result.

See also: bin2dec, dec2base, base2dec, hex2dec, dec2hex.

dec2hex (n, len) [Function File]
Return the hexadecimal string corresponding to the nonnegative integer n. For example,

dec2hex (2748)
= "ABC"

If n is a vector, returns a string matrix, one row per value, padded with leading zeros to the
width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the result.

See also: hex2dec, dec2base, base2dec, bin2dec, dec2bin.

hex2dec (s) [Function File]
Return the integer corresponding to the hexadecimal number stored in the string s. For
example,

hex2dec ("12B")
= 299
hex2dec ("12b")
= 299

If s is a string matrix, returns a column vector of converted numbers, one per row of s. Invalid
rows evaluate to NaN.

See also: dec2hex, base2dec, dec2base, bin2dec, dec2bin.

dec2base (n, b, len) [Function File]
Return a string of symbols in base b corresponding to the nonnegative integer n.

dec2base (123, 3)
= "11120"

If n is a vector, return a string matrix with one row per value, padded with leading zeros to
the width of the largest value.

If b is a string then the characters of b are used as the symbols for the digits of n. Space (’
’) may not be used as a symbol.

dec2base (123, "aei")
= "eeeia"

The optional third argument, len, specifies the minimum number of digits in the result.

See also: base2dec, dec2bin, bin2dec, hex2dec, dec2hex.

base2dec (s, b) [Function File]
Convert s from a string of digits of base b into an integer.

Chapter 5: Strings 51

base2dec ("11120", 3)

= 123
If s is a matrix, returns a column vector with one value per row of s. If a row contains invalid
symbols then the corresponding value will be NaN. Rows are right-justified before converting
so that trailing spaces are ignored.
If b is a string, the characters of b are used as the symbols for the digits of s. Space (*’) may
not be used as a symbol.

base2dec ("yyyzx", "xyz")
= 123

See also: dec2base, dec2bin, bin2dec, hex2dec, dec2hex.

[num, status, strarray] = str2double (str, cdelim, rdelim, [Function File]
ddelim)
Convert strings into numeric values.

str2double can replace str2num, but avoids the use of eval on unknown data.

str can be the form ‘[+-]1d[.]dd[[eE] [+-1ddd]’ in which ‘d’ can be any of digit from 0 to
9, and ‘[]’ indicate optional elements.

num is the corresponding numeric value. If the conversion fails, status is -1 and num is NaN.
status is 0 if the conversion was successful and -1 otherwise.

strarray is a cell array of strings.

Elements which are not defined or not valid return NaN and the status becomes -1.

If str is a character array or a cell array of strings, then num and status return matrices of
appropriate size.

str can also contain multiple elements separated by row and column delimiters (cdelim and
rdelim).

The parameters cdelim, rdelim, and ddelim are optional column, row, and decimal delimiters.
The default row-delimiters are newline, carriage return and semicolon (ASCII 10, 13 and 59).

The default column-delimiters are tab, space and comma (ASCII 9, 32, and 44). The default
decimal delimiter is ‘.” (ASCII 46).

cdelim, rdelim, and ddelim must contain only nul, newline, carriage return, semicolon, colon,
slash, tab, space, comma, or ‘() [1{}’ (ASCII 0, 9, 10, 11, 12, 13, 14, 32, 33, 34, 40, 41, 44,
47, 58, 59, 91, 93, 123, 124, 125).

Examples:

str2double ("-.1le-5")
= -1.0000e-006

str2double (".314el, 44.44e-1, .7; -le+1")
=

3.1400 4.4440 0.7000
-10.0000 NaN NaN

line = "200, 300, NaN, -inf, yes, no, 999, maybe, NaN";
[x, status] = str2double (line)
= X =
200 300 NaN -Inf NaN NaN 999 NaN NaN
= status =
0 0 0 0 -1 -1 0 -1 0

92 GNU Octave

strjust (s, ["left" | "right" | "center"]) [Function File]
Shift the non-blank text of s to the left, right or center of the string. If s is a string array,
justify each string in the array. Null characters are replaced by blanks. If no justification is
specified, then all rows are right-justified.

str2num (s) [Function File]
Convert the string s to a number.

toascii (s) [Mapping Function]
Return ASCII representation of s in a matrix. For example,

toascii ("ASCII")
= [65, 83, 67, 73, 73 1]

tolower (s) [Mapping Function]
Return a copy of the string s, with each upper-case character replaced by the corresponding
lower-case one; nonalphabetic characters are left unchanged. For example,

tolower ("MiXeD cAsE 123")
= "mixed case 123"

toupper (s) [Built-in Function]
Return a copy of the string s, with each lower-case character replaced by the corresponding
upper-case one; nonalphabetic characters are left unchanged. For example,

toupper ("MiXeD cAsE 123")
= "MIXED CASE 123"

do_string_escapes (string) [Built-in Function]
Convert special characters in string to their escaped forms.

undo_string_escapes (s) [Built-in Function]
Converts special characters in strings back to their escaped forms. For example, the expression
bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible). This is
normally the desired outcome. However, sometimes it is useful to be able to print the original
representation of the string, with the special characters replaced by their escape sequences.
For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

5.5 Character Class Functions

Octave also provides the following character class test functions patterned after the functions in
the standard C library. They all operate on string arrays and return matrices of zeros and ones.
Elements that are nonzero indicate that the condition was true for the corresponding character
in the string array. For example,
isalpha ("!Q@WERT"Y&")
= [0,1,0,1,1, 1,1, 0, 1, 0]

Chapter 5: Strings 53

isalnum (s) [Mapping Function]
Return 1 for characters that are letters or digits (isalpha (s) or isdigit (s) is true).

isalpha (s) [Mapping Function]
isletter (s) [Mapping Function]
Return true for characters that are letters (isupper (s) or islower (s) is true).

isascii (s) [Mapping Function]
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).

iscntrl (s) [Mapping Function]
Return 1 for control characters.

isdigit (s) [Mapping Function]
Return 1 for characters that are decimal digits.

isgraph (s) [Mapping Function]
Return 1 for printable characters (but not the space character).

isletter (s) [Function File]
Returns true if s is a letter false otherwise.

See also: isalpha.

islower (s) [Mapping Function]
Return 1 for characters that are lower case letters.

isprint (s) [Mapping Function]
Return 1 for printable characters (including the space character).

ispunct (s) [Mapping Function]
Return 1 for punctuation characters.

isspace (s) [Mapping Function]
Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab, and ver-
tical tab).

isupper (s) [Mapping Function]
Return 1 for upper case letters.

isxdigit (s) [Mapping Function]
Return 1 for characters that are hexadecimal digits.

54

GNU Octave

Chapter 6: Data Containers 55

6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in the
same variable. Structures, which are C-like, and are indexed with named fields, and cell arrays,
where each element of the array can have a different data type and or shape.

6.1 Data Structures

Octave includes support for organizing data in structures. The current implementation uses an
associative array with indices limited to strings, but the syntax is more like C-style structures.
Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a =1
x.b = [1, 2; 3, 4]
x.c = "string"

create a structure with three elements. To print the value of the structure, you can type its
name, just as for any other variable:

octave:2> x

(¢}
]

string

}
Note that Octave may print the elements in any order.
Structures may be copied.

octave:1> y = x
y:
{

a=1

b=

O
I

string

¥

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

26 GNU Octave

octave:1> x.b.d = 3

x.b.d = 3
octave:2> x.b
ans =
{

d =3
}
octave:3> x
X =
{

a=1

b =

{

d =3

}

c = string
}

Note that when Octave prints the value of a structure that contains other structures, only a
few levels are displayed. For example,

octave:1> a.b.c.d.e = 1;
octave:2> a
a:

{

d: 1x1 struct

}
+

This prevents long and confusing output from large deeply nested structures.

val = struct_levels_to_print () [Built-in Function]
old_val = struct_levels_to_print (new_val) [Built-in Function]
Query or set the internal variable that specifies the number of structure levels to display.

Functions can return structures. For example, the following function separates the real and
complex parts of a matrix and stores them in two elements of the same structure variable.

octave:1> function y = £ (x)
> y.re = real (x);

> y.im = imag (x);

> endfunction

When called with a complex-valued argument, £ returns the data structure containing the
real and imaginary parts of the original function argument.

Chapter 6: Data Containers

octave:2> f (rand (2) + rand (2) * I)

ans =

{

im

0.26475 0.14828
0.18436 0.83669

0.040239 0.242160
0.238081 0.402523

57

Function return lists can include structure elements, and they may be indexed like any other
variable. For example,

octave:1> [x.u, x.s8(2:3,2:3), x.v]

X.u =

-0.40455 -0.91451
-0.91451 0.40455

0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597

-0.57605 0.81742
-0.81742 -0.57605

svd ([1, 2; 3, 4])

It is also possible to cycle through all the elements of a structure in a loop, using a special

form of the for statement (see Section 10.5 [The for Statement|, page 101)

6.1.1 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the structure
is represented by a cell array. Each of these cell arrays has the same dimensions. An example
of the creation of a structure array is

x(1).a = "stringl"
x(2).a = "string2"
x(1).b =1
x(2).b = 2

which creates a 2-by-1 structure array with two fields. As previously, to print the value of the
structure array, you can type its name:

28 GNU Octave

octave:2> x

X =
{
a =
G
[1] = stringl
[2] = string2
))
b =
G
(11 = 1
[2] = 2
»)
+

Individual elements of the structure array can be returned by indexing the variable like x
(1), which returns a structure with the two fields like

octave:2> x(1)

ans =
{
a = stringl
b= 1
¥

Furthermore, the structure array can return a comma separated list (see Section 6.3 [Comma
Separated Lists|, page 68), if indexed by one of itself field names. For example

octave:3> x.a

ans =
G
[1] = stringl
[2] = string2
»)

The function size with return the size of the structure. For the example above

octave:4> size(x)
ans =

Elements can be deleted from a structure array in a similar manner to a numerical array, by
assigning the elements to an empty matrix. For example

Chapter 6: Data Containers 59
in = struct ("calll", {x, Inf, "last"},
"call2", {x, Inf, "first"});
in (1,) =[]
= in =
{
calll =
G
[1] = Inf
[2] = last
»)
call2 =
G
[1] = Inf
[2] = first
»)
}
6.1.2 Creating Structures
As well as indexing a structure with ".", Octave can create a structure with the struct com-

mand. struct takes pairs of arguments, where the first argument in the pair is the fieldname
to include in the structure and the second is a scalar or cell array, representing the values to

include in the structure or structure array. For example

struct ("fieldl", 1, "field2", 2)

= ans =
{
fieldl
field2
}

nn
N =

If the values passed to struct are a mix of scalar and cell arrays, then the scalar arguments

are expanded to create a structure array with a consistent dimension. For example

60 GNU Octave

struct ("field1", {1, "omne"}, "field2", {2, "two"},

"field3", 3)
= ans =
{
fieldl =
G
(1] = 1
[2] = one
)
field2 =
G
(1] = 2
[2] = two
)
field3d =
G
[11] = 3
2] = 3
))
}
struct ("field", value, "field", value, ...) [Built-in Function]

Create a structure and initialize its value.

If the values are cell arrays, create a structure array and initialize its values. The dimensions
of each cell array of values must match. Singleton cells and non-cell values are repeated so
that they fill the entire array. If the cells are empty, create an empty structure array with
the specified field names.

isstruct (expr) [Built-in Function]
Return 1 if the value of the expression expr is a structure.

Additional functions that can manipulate the fields of a structure are listed below.

rmfield (s, f) [Built-in Function]
Remove field f from the structure s. If f is a cell array of character strings or a character
array, remove the named fields.

See also: cellstr, iscellstr, setfield.

[k1, ..., v1] = setfield (s, k1, v1,...) [Function File]
Set field members in a structure.
oo(1,1).f0= 1;
oo = setfield(oo,{1,2},’fd’,{3},’b’, 6);
00(1,2).fd(3).b ==
= ans = 1

Note that this function could be written

Chapter 6: Data Containers 61

i1l= {1,2}; i2= ’fd’; i3= {3}; id= ’b’;
oo(i1{:}). i2)(i3{:}).(i4) == 6;

See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.

[t, p]l] = orderfields (s1, s2) [Function File]
Return a struct with fields arranged alphabetically or as specified by s2 and a corresponding
permutation vector.

Given one struct, arrange field names in sl alphabetically.

Given two structs, arrange field names in s1 as they appear in s2. The second argument may
also specify the order in a permutation vector or a cell array of strings.

See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.

6.1.3 Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

fieldnames (struct) [Built-in Function]
Return a cell array of strings naming the elements of the structure struct. It is an error to
call fieldnames with an argument that is not a structure.

isfield (expr, name) [Built-in Function]
Return true if the expression expr is a structure and it includes an element named name.
The first argument must be a structure and the second must be a string.

[vi, ...] = getfield (s, key, ...) [Function File]
Extract fields from a structure. For example
ss(1,2).fd(3) .b=5;
getfield (ss, {1,2}, "fd", {3}, "b")
= ans = 5

Note that the function call in the previous example is equivalent to the expression
il= {1,2}; i2= "fd"; i3= {3}; id4= "b";
ss(i1{:}).(12) (13{:}). (14

See also: setfield, rmfield, isfield, isstruct, fieldnames, struct.

substruct (type, subs, ...) [Function File]
Create a subscript structure for use with subsref or subsasgn.

See also: subsref, subsasgn.

6.1.4 Processing Data in Structures

The simplest way to process data in a structure is within a for loop or othe means of iterating
over the fields. A similar effect can be achieved with the structfun function, where a user
defined function is applied to each field of the structure.

structfun (func, s) [Function File]

[a, b] = structfun (...) [Function File]

structfun (..., 'ErrorHandler’, errfunc) [Function File]

structfun (..., 'UniformOutput’, val) [Function File]
Evaluate the function named name on the fields of the structure s. The fields of s are passed
to the function func individually.

62 GNU Octave

structfun accepts an arbitrary function func in the form of an inline function, function
handle, or the name of a function (in a character string). In the case of a character string
argument, the function must accept a single argument named x, and it must return a string
value. If the function returns more than one argument, they are returned as separate output
variables.

If the param ’UniformOutput’ is set to true (the default), then the function must return
either a single element which will be concatenated into the return value. If "UniformOutput
is false, the outputs placed in a structure with the same fieldnames as the input structure.

s.namel "John Smith";

s.name2 = "Jill Jones";

structfun (Q(x) regexp (x, ’>(\w+)$’, ’matches’){1}, s,
>UniformOutput’, false)

Given the parameter 'ErrorHandler’, then errfunc defines a function to call in case func
generates an error. The form of the function is

function [...] = errfunc (se, ...)

where there is an additional input argument to errfunc relative to func, given by se. This is
a structure with the elements ’identifier’, 'message’ and ’index’, giving respectively the error
identifier, the error message, and the index into the input arguments of the element that
caused the error.

See also: cellfun, arrayfun.

Alternatively, to process the data in a structure, the structure might be converted to another
type of container before being treated.

struct2cell (S) [Built-in Function]
Create a new cell array from the objects stored in the struct object. If f is the number of
fields in the structure, the resulting cell array will have a dimension vector corresponding to
[F size(S)].

See also: cell2struct, fieldnames.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type in one
variable. A cell array is a container class able to do just that. In general cell arrays work just
like N-dimensional arrays, with the exception of the use of ‘{’ and ‘}’ as allocation and indexing
operators.

As an example, the following code creates a cell array containing a string and a 2-by-2 random
matrix

c = {"a string", rand(2, 2)};

And a cell array can be indexed with the { and } operators, so the variable created in the
previous example can be indexed like this

c{1}

= ans = a string

As with numerical arrays several elements of a cell array can be extracted by indexing with a
vector of indexes

Chapter 6: Data Containers 63

c{1:2}
= ans =
G
[1] = a string
(2] =
0.593993 0.627732
0.377037 0.033643
»)

The indexing operators can also be used to insert or overwrite elements of a cell array. The
following code inserts the scalar 3 on the third place of the previously created cell array

c{3} =3
C =
{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
}

In general nested cell arrays are displayed hierarchically as above. In some circumstances
it makes sense to reference them by their index, and this can be performed by the celldisp
function.

celldisp (c, name) [Function File]
Recursively display the contents of a cell array. By default the values are displayed with the
name of the variable c. However, this name can be replaced with the variable name.

See also: disp.

6.2.1 Creating Cell Array

The introductory example showed how to create a cell array containing currently available
variables. In many situations, however, it is useful to create a cell array and then fill it with
data.

The cell function returns a cell array of a given size, containing empty matrices. This
function works very similar to the zeros function for creating new numerical arrays. The
following example creates a 2-by-2 cell array containing empty matrices

c = cell(2,2)

= Cc =
{
(1,11 = [1(0x0)
[2,1] = [1(0x0)
[1,2] = [1(0x0)
[2,2] = [1(0x0)

64 GNU Octave

Just like numerical arrays, cell arrays can be multidimensional. The cell function accepts
any number of positive integers to describe the size of the returned cell array. It is also possible
to set the size of the cell array through a vector of positive integers. In the following example
two cell arrays of equal size is created, and the size of the first one is displayed

cl = cell(3, 4, 5);
c2 = cell([3, 4, 5]);
size(cl)
= ans =
3 4 5

As can be seen, the size function also works for cell arrays. As do the other functions describing
the size of an object, such as length, numel, rows, and columns.

An alternative to creating empty cell arrays, and then filling them, it is possible to convert
numerical arrays into cell arrays using the num2cell and mat2cell functions.

cell (x) [Built-in Function]

cell (n, m) [Built-in Function]
Create a new cell array object. If invoked with a single scalar argument, cell returns a
square cell array with the dimension specified. If you supply two scalar arguments, cell
takes them to be the number of rows and columns. If given a vector with two elements, cell
uses the values of the elements as the number of rows and columns, respectively.

iscell (x) [Built-in Function]
Return true if x is a cell array object. Otherwise, return false.

¢ = num2cell (m) [Loadable Function]
¢ = num2cell (m, d) [Loadable Function]
Convert to matrix m into a cell array. If d is defined the value c is of dimension 1 in this
dimension and the elements of m are placed in slices in c.
See also: mat2cell.
b = mat2cell (a, m, n) [Loadable Function]
b = mat2cell (a, d1,d2, ...) [Loadable Function]
b = mat2cell (a, r) [Loadable Function]
Converts the matrix a to a cell array If a is 2-D, then it is required that sum (m) == size
(a, 1) and sum (n) == size (a, 2). Similarly, if a is a multi-dimensional and the number

of dimensional arguments is equal to the dimensions of a, then it is required that sum (di)
== gize (a, 1i).

Given a single dimensional argument r, the other dimensional arguments are assumed to
equal size (a,i).

An example of the use of mat2cell is

Chapter 6: Data Containers 65

mat2cell (reshape(1:16,4,4),[3,1],[3,1])
= A
[1,1] =

[1,2]
13
14
15

[2,2]

16

See also: num2cell, cell2mat.

6.2.2 Indexing Cell Arrays

As shown in the introductory example elements can be inserted from cell arrays using the
‘{” and ‘}’ operators. Besides the change of operators, indexing works for cell arrays like for
multidimensional arrays. As an example, all the rows of the first and third column of a cell
array can be set to 0 with the following code

c{:, [1, 31} = O;

Accessing values in a cell array is, however, different from the same operation for numerical
arrays. Accessing a single element of a cell array is very similar to numerical arrays, for example

element = c{1, 2};

This will, however, not work when accessing multiple elements of a cell array, because it might
not be possible to represent all elements with a single variable as is the case with numerical
arrays.

Accessing multiple elements of a cell array with the ‘{’ and ‘} operators will result in a
comma-separated list (see Section 6.3 [Comma Separated Lists|, page 68) of all the requested
elements as discussed later.

One distinction between ‘{” and ‘(’ to index cell arrays is in the deletion of elements from
the cell array. In a similar manner to a numerical array the ‘()’ operator can be used to delete
elements from the cell array. The ‘{}’ operator however will remove the elements of the cell
array, but not delete the space for them. For example

66 GNU Octave

X = {||1ll’ "2"; ll3"’ ||4ll};

x{1, :} =[]
= X =
{
(1,11 = [1(0x0)
(2,11 = 3
[1,2] = [1(0x0)
[2,2] = 4
}
x(1,) =[]
= X =
{
[1,1] = 3
[1,2] = 4
}

6.2.3 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is possible
to store multiple strings in a character matrix by letting each row be a string. This, however,
introduces the problem that all strings must be of equal length. Therefore it is recommended
to use cell arrays to store multiple strings. If, however, the character matrix representation
is required for an operation, it can be converted to a cell array of strings using the cellstr
function

a = ["hello"; "world"];
c = cellstr (a)
= Cc =
{
[1,1] = hello
[2,1] = world
}

One further advantage of using cell arrays to store multiple strings, is that most functions
for string manipulations included with Octave support this representation. As an example, it
is possible to compare one string with many others using the strcmp function. If one of the
arguments to this function is a string and the other is a cell array of strings, each element of the
cell array will be compared the string argument,

¢ = {"hello", "world"};
strcmp ("hello", c)
= ans =
1 0

The following functions for string manipulation support cell arrays of strings, strcmp, strcmpi,
strncmp, strncmpi, str2double, str2mat, strappend, strtrunc, strvcat, strfind, and
strmatch.

cellstr (string) [Built-in Function]
Create a new cell array object from the elements of the string array string.

iscellstr (cell) [Built-in Function]
Return true if every element of the cell array cell is a character string

Chapter 6: Data Containers

[idxvec, errmsg] = cellidx (listvar, strlist)

Return indices of string entries in listvar that match strings in strlist.

67

[Function File]

Both listvar and strlist may be passed as strings or string matrices. If they are passed as
string matrices, each entry is processed by deblank prior to searching for the entries.

The first output is the vector of indices in listvar.

If strlist contains a string not in listvar, then an error message is returned in errmsg. If only
one output argument is requested, then cellidx prints errmsg to the screen and exits with an

error.

6.2.4 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The most simple way to process that data is to iterate through it using one or more for
loops. The same idea can be implemented easier through the use of the cellfun function that

calls a user specified function on all elements of a cell array.

cellfun (name, c)

cellfun ("size", c, k)

cellfun ("isclass", c, class)

cellfun (func, c)

cellfun (func, c, d)

[a, b] = cellfun (...)

cellfun (..., 'ErrorHandler’, errfunc)

cellfun (..., 'UniformOutput’, val)

[Loadable Function]
[Loadable Function]
[Loadable Function)]
[Loadable Function]
[Loadable Function]
[Loadable Function]
[Loadable Function]
[Loadable Function)]

Evaluate the function named name on the elements of the cell array c¢. Elements in ¢ are
passed on to the named function individually. The function name can be one of the functions

isempty Return 1 for empty elements.

islogical
Return 1 for logical elements.

isreal Return 1 for real elements.

length Return a vector of the lengths of cell elements.
ndims Return the number of dimensions of each element.
prodofsize

Return the product of dimensions of each element.

size Return the size along the k-th dimension.

isclass Return 1 for elements of class.

Additionally, cellfun accepts an arbitrary function func in the form of an inline function,
function handle, or the name of a function (in a character string). In the case of a character
string argument, the function must accept a single argument named x, and it must return a
string value. The function can take one or more arguments, with the inputs args given by c,
d, etc. Equally the function can return one or more output arguments. For example

cellfun (@atan2, {1, 0}, {0, 1})
=ans = [1.57080 0.00000]
Note that the default output argument is an array of the same size as the input arguments.

If the param 'UniformOutput’ is set to true (the default), then the function must return
either a single element which will be concatenated into the return value. If "UniformOutput
is false, the outputs are concatenated in a cell array. For example

63 GNU Octave

cellfun ("tolower(x)", {"Foo", "Bar", "FooBar"},
"UniformOutput",false)
= ans = {"foo", "bar", "foobar"}

Given the parameter 'ErrorHandler’, then errfunc defines a function to call in case func
generates an error. The form of the function is

function [...] = errfunc (s, ...)

where there is an additional input argument to errfunc relative to func, given by s. This is
a structure with the elements ’identifier’, 'message’ and ’index’, giving respectively the error
identifier, the error message, and the index into the input arguments of the element that
caused the error. For example

function y = foo (s, x), y = NaN; endfunction

cellfun (@factorial, {-1,2},’ErrorHandler’,@foo)
= ans = [NaN 2]

See also: isempty, islogical, isreal, length, ndims, numel, size, isclass.
An alternative is to convert the data to a different container, such as a matrix or a data

structure. Depending on the data this is possible using the cell2mat and cell2struct func-
tions.

m = cell2mat (c) [Function File]
Convert the cell array ¢ into a matrix by concatenating all elements of ¢ into a hyperrectangle.
Elements of ¢ must be numeric, logical or char, and cat must be able to concatenate them
together.

See also: mat2cell, num2cell.

cell2struct (cell, fields, dim) [Built-in Function]
Convert cell to a structure. The number of fields in fields must match the number of elements
in cell along dimension dim, that is numel (fields) == size (cell, dim).

A = cell2struct ({’Peter’, ’Hannah’, ’Robert’;
185, 170, 1687},
{’Name’, ’Height’}, 1);
ACD)
= ans =
{
Height
Name

185
Peter

6.3 Comma Separated Lists

Comma separated lists are the basic argument type to all Octave functions. In the example
max (a, b)
a, b is a comma separated list. Comma separated lists can appear on both the right and left
hand side of an equation. For example
[i, j] = ceil (find (x, [1, "last"));
where i, j is equally a comma separated list. Comma separated lists can not be directly
manipulated by the user. However, both structures are cell arrays can be converted into comma

separated lists, which makes them useful to keep the input arguments and return values of
functions organized. Another example of where a comma separated list can be used is in the

Chapter 6: Data Containers 69

creation of a new array. If all the accessed elements of a cell array are scalars or column vectors,
they can be concatenated into a new column vector containing the elements, by surrounding the
list with [and] as in the following example

a = {1, [2, 3], 4};
b = [a{:}]
= b =
1 2 3 4

It is also possible to pass the accessed elements directly to a function. The list of elements
from the cell array will be passed as an argument list to a given function as if it is called with
the elements as arguments. The two calls to printf in the following example are identical but
the latter is simpler and handles more situations

c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("%s ", c{1}, c{2}, c{3}, c{4}, <{5});

- GNU Octave is Free Software
printf ("%s ", c{:});

- GNU Octave is Free Software

Just like it is possible to create a numerical array from selected elements of a cell array, it
is possible to create a new cell array containing the selected elements. By surrounding the list
with ‘{” and ‘}” a new cell array will be created, like the following example illustrates

a = {1, rand(2, 2), "three"};

b={a{l1, 3] } 1}
= b =
{
(1,11 = 1
[1,2] = three
}

This syntax is however a bit cumbersome, and since this is a common operation, it is possible to
achieve the same using the ‘(" and ‘)’ operators for indexing. When a cell array is indexed using
the ‘C and ‘)’ operators a new cell array containing the selected elements. Using this syntax,
the previous example can be simplified into the following

a = {1, rand(2, 2), "three"};

b =a([1, 3])
= b =
{
[1,1] = 1
[1,2] = three
}

A comma separated list can equally appear on the left-hand side of an assignment. An
example is

in {1} = ceil (rand (10, 1));

in {2} = [J;

in {3} = "last";

in {4} = "first";

out = cell (4, 1);

[out{1:2}] = find (in{1l : 33});
[out{3:4}] = find (in{[1, 2, 41});

Structure arrays can equally be used to create comma separated lists. This is done by
addresses one of the fields of a structure array. For example

70

x = ceil (randn (10, 1));
in = struct ("calll", {x, Inf, "last"},
"call2", {x, Inf, "first"});
out = struct ("calll", cell (2, 1), "call2", cell (2, 1));
[out.calll] = find (in.calll);

[out.call2] = find (in.call2);

GNU Octave

Chapter 7: Variables 71

7 Variables

Variables let you give names to values and refer to them later. You have already seen variables
in many of the examples. The name of a variable must be a sequence of letters, digits and
underscores, but it may not begin with a digit. Octave does not enforce a limit on the length
of variable names, but it is seldom useful to have variables with names longer than about 30
characters. The following are all valid variable names

X
x15

__foo_bar_baz_
fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are understood
to be reserved for internal use by Octave. You should not use them in code you write, except
to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value. Vari-
ables are given new values with assignment operators and increment operators. See Section 8.6
[Assignment Expressions|, page 88.

A number of variables have special built-in meanings. For example, ans holds the current
working directory, and pi names the ratio of the circumference of a circle to its diameter. See
Section 7.4 [Summary of Built-in Variables|, page 77, for a list of all the predefined variables.
Some of these built-in symbols are constants and may not be changed. Others can be used and
assigned just like all other variables, but their values are also used or changed automatically by
Octave.

Variables in Octave do not have fixed types, so it is possible to first store a numeric value
in a variable and then to later use the same name to hold a string value in the same program.
Variables may not be used before they have been given a value. Doing so results in an error.

isvarname (name) [Built-in Function]
Return true if name is a valid variable name

7.1 Global Variables
A variable that has been declared global may be accessed from within a function body without
having to pass it as a formal parameter.

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a

global a b

global c = 2

global d = 3 e £ =5

A global variable may only be initialized once in a global statement. For example, after
executing the following code
global gvar = 1
global gvar = 2
the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.

It is necessary declare a variable as global within a function body in order to access it. For
example,

72 GNU Octave

global x

function f ()
x =1;

endfunction

f 0O

does not set the value of the global variable x to 1. In order to change the value of the global
variable x, you must also declare it to be global within the function body, like this

function £ ()
global x;
x =1;
endfunction
Passing a global variable in a function parameter list will make a local copy and not modify
the global value. For example, given the function
function f (x)
x =0
endfunction
and the definition of x as a global variable at the top level,
global x = 13
the expression
f x)
will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

isglobal (name) [Built-in Function]
Return 1 if name is globally visible. Otherwise, return 0. For example,
global x
isglobal ("x")
=1

7.2 Persistent Variables

A variable that has been declared persistent within a function will retain its contents in memory
between subsequent calls to the same function. The difference between persistent variables and
global variables is that persistent variables are local in scope to a particular function and are
not visible elsewhere.

The following example uses a persistent variable to create a function that prints the number
of times it has been called.

function count_calls ()
persistent calls = O;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

for i = 1:3
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times
- ’count_calls’ has been called 3 times

Chapter 7: Variables 73

As the example shows, a variable may be declared persistent using a persistent declaration
statement. The following statements are all persistent declarations.

persistent a
persistent a b
persistent c
persistent d

2
3ef=5

The behavior of persistent variables is equivalent to the behavior of static variables in C. The
command static in octave is also recognized and is equivalent to persistent.

Like global variables, a persistent variable may only be initialized once. For example, after
executing the following code

persistent pvar = 1
persistent pvar = 2

the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether it is
empty, as the following example illustrates.

function count_calls ()
persistent calls;
if (isempty (calls))
calls = 0;
endif
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

This implementation behaves in exactly the same way as the previous implementation of count_
calls.

The value of a persistent variable is kept in memory until it is explicitly cleared. Assuming
that the implementation of count_calls is saved on disc, we get the following behaviour.

74 GNU Octave

for i = 1:2
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

clear

for i = 1:2
count_calls();

endfor

- ’count_calls’ has been called 3 times
- ’count_calls’ has been called 4 times

clear all
for i = 1:2
count_calls();
endfor
- ’count_calls’ has been called 1 times
-4 ’count_calls’ has been called 2 times

clear count_calls

for i = 1:2
count_calls();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire function
definition will be removed from memory. If you do not want a persistent variable to be removed
from memory even if the function is cleared, you should use the mlock function as described in
See Section 11.7.4 [Function Locking], page 117.

7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables are
available at the prompt. The function who and its siblings whos and whos_line_format will
show different information about what is in memory, as the following shows.
str = "A random string";
who -variables
- *%% local user variables:

_{

-+ __nargin__ str
who options pattern . . . [Command|
whos options pattern . .. [Command]

List currently defined symbols matching the given patterns. The following are valid options.
They may be shortened to one character but may not be combined.

-all List all currently defined symbols.

-builtins
List built-in functions. This includes all currently compiled function files, but
does not include all function files that are in the search path.

Chapter 7: Variables 75

—-functions
List user-defined functions.

-long Print a long listing including the type and dimensions of any symbols. The
symbols in the first column of output indicate whether it is possible to redefine
the symbol, and whether it is possible for it to be cleared.

-variables
List user-defined variables.

Valid patterns are the same as described for the clear command above. If no patterns
are supplied, all symbols from the given category are listed. By default, only user defined
functions and variables visible in the local scope are displayed.

The command whos is equivalent to who -Iong.

whos options pattern . . . [Command]|
See who.

val = whos_line_format () [Built-in Function]

old_val = whos_line_format (new_val) [Built-in Function]

Query or set the format string used by the whos.

The following escape sequences may be used in the format:

)b Prints number of bytes occupied by variables.
he Prints class names of variables.

he Prints elements held by variables.

hn Prints variable names.

hp Prints protection attributes of variables.

s Prints dimensions of variables.

Wt Prints type names of variables.

Every command may also have a modifier:

1 Left alignment.
r Right alignment (this is the default).
c Centered (may only be applied to command %s).

A command is composed like this:

%[modifier]<command>[:size_of_parameter[:center-specific[
:print_dims[:balancel]l];

Command and modifier is already explained. Size_of_parameter tells how many columns the
parameter will need for printing. print_dims tells how many dimensions to print. If number
of dimensions exceeds print_dims, dimensions will be printed like x-D. center-specific and
print_dims may only be applied to command %s. A negative value for print_dims will cause
Octave to print all dimensions whatsoever. balance specifies the offset for printing of the
dimensions string.

The default format is " %p:4; %In:6; %cs:16:6:8:1; %rb:12; %lc:-1;:\n".

Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behaviour of a program depending on
the existence of a variable. The following example illustrates this.

76 GNU Octave

if (! exist ("meaning", "var"))
disp ("The program has no ’meaning’");
endif

exist (name, type) [Built-in Function]
Return 1 if the name exists as a variable, 2 if the name (after appending ‘.m’) is a function
file in Octave’s path, 3 if the name is a ‘.oct’ or ‘.mex’ file in Octave’s path, 5 if the name is
a built-in function, 7 if the name is a directory, or 103 if the name is a function not associated
with a file (entered on the command line).

Otherwise, return 0.

This function also returns 2 if a regular file called name exists in Octave’s search path. If
you want information about other types of files, you should use some combination of the
functions file_in_path and stat instead.

If the optional argument type is supplied, check only for symbols of the specified type. Valid
types are

‘n

var"’ Check only for variables.

“"builtin"’
Check only for built-in functions.

‘"file"’ Check only for files.

‘dir"’ Check only for directories.

Usually Octave will manage the memory, but sometimes it can be practical to remove vari-
ables from memory manually. This is usually needed when working with large variables that fill
a substantial part of the memory. On a computer that uses the IEEE floating point format, the
following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);

Since having this variable in memory might slow down other computations, it can be necessary
to remove it manually from memory. The clear function allows this.

clear [-x] pattern ... [Command|
Delete the names matching the given patterns from the symbol table. The pattern may
contain the following special characters:

? Match any single character.
* Match zero or more characters.

[1ist] Match the list of characters specified by list. If the first character is ! or ~, match
all characters except those specified by list. For example, the pattern ‘[a-zA-Z]’
will match all lower and upper case alphabetic characters.

For example, the command
clear foo b*r
clears the name foo and all names that begin with the letter b and end with the letter r.

If clear is called without any arguments, all user-defined variables (local and global) are
cleared from the symbol table. If clear is called with at least one argument, only the
visible names matching the arguments are cleared. For example, suppose you have defined
a function foo, and then hidden it by performing the assignment foo = 2. Executing the
command clear foo once will clear the variable definition and restore the definition of foo
as a function. Executing clear foo a second time will clear the function definition.

With -x, clear the variables that don’t match the patterns.

Chapter 7: Variables 7

Information about a function or variable such as it’s location in the file system can also be
acquired from within Octave. This is usually only useful during development of programs, and
not within a program.

document (symbol, text) [Built-in Function]
Set the documentation string for symbol to text.

type options name . .. [Command|
Display the definition of each name that refers to a function.

Normally also displays whether each name is user-defined or built-in; the -q option suppresses
this behaviour.

which name ... [Command|
Display the type of each name. If name is defined from a function file, the full name of the
file is also displayed.

See also: help, lookfor.

7.4 Summary of Built-in Variables

Here is a summary of all of Octave’s built-in variables along with cross references to additional
information and their default values. In the following table octave-home stands for the root
directory where all of Octave is installed (the default is ‘/usr/local’, version stands for the
Octave version number (for example, 2.9.18) and arch stands for the type of system for which
Octave was compiled (for example, x86_64-unknown-1linux-gnu).
EDITOR See Section 2.4.5 [Commands For History], page 18.

Default value: "emacs".
EXEC_PATH

See Section 35.5 [Controlling Subprocesses|, page 429.

Default value: ":$PATH".
OCTAVE_HOME

Default value: "/usr/local".
PAGER See Chapter 14 [Input and Output|, page 137.

Default value: "less", or "more".

PS1 See Section 2.4.7 [Customizing the Prompt], page 20.
Default value: "\s:\#> ".

PS2 See Section 2.4.7 [Customizing the Prompt], page 20.

Default value: "> ".

PS4 See Section 2.4.7 [Customizing the Prompt], page 20.
Default value: "+ ".

beep_on_error
See Chapter 12 [Errors and Warnings|, page 125.
Default value: 0.

completion_append_char
See Section 2.4.4 [Commands For Completion], page 18.

Default value: " ".

78 GNU Octave

default_save_options
See Section 14.1.3 [Simple File /0], page 141.

Default value: "ascii".
crash_dumps_octave_core
See Section 14.1.3 [Simple File I/0], page 141.
Default value: 1.
fixed_point_format
See Section 4.1 [Matrices|, page 29.
Default value: 0.
gnuplot_binary
See Section 15.1.2 [Three-Dimensional Plotting], page 174.
Default value: "gnuplot".
history_file
See Section 2.4.5 [Commands For History], page 18.
Default value: "~/.octave_hist".
history_size
See Section 2.4.5 [Commands For History|, page 18.
Default value: 1024.
ignore_function_time_stamp
See Section 11.7 [Function Files|, page 113.
Default value: "system".
max_recursion_depth
See Section 8.2.2 [Recursion], page 84.
Default value: 256.
output_max_field_width
See Section 4.1 [Matrices|, page 29.
Default value: 10.
output_precision
See Section 4.1 [Matrices|, page 29.
Default value: 5.
page_screen_output
See Chapter 14 [Input and Output], page 137.
Default value: 1.
print_answer_id_name
See Section 14.1.1 [Terminal Output], page 137.
Default value: 1.
print_empty_dimensions
See Section 4.1.1 [Empty Matrices|, page 32.
Default value: 1.
return_last_computed_value
See Section 11.5 [Returning From a Function], page 112.
Default value: 0.

Chapter 7: Variables 79

save_precision
See Section 14.1.3 [Simple File /0], page 141.

Default value: 17.
saving_history
See Section 2.4.5 [Commands For History|, page 18.
Default value: 1.
sighup_dumps_octave_core
See Section 14.1.3 [Simple File I/0], page 141.
Default value: 1.
sigterm_dumps_octave_core
See Section 14.1.3 [Simple File I/0], page 141.
Default value: 1.
silent_functions
See Section 11.1 [Defining Functions], page 107.
Default value: 0.
split_long_rows
See Section 4.1 [Matrices|, page 29.
Default value: 1.
struct_levels_to_print
See Section 6.1 [Data Structures], page 55.
Default value: 2.
suppress_verbose_help_message
See Section 2.3 [Getting Help], page 14.
Default value: 1.

7.5 Defaults from the Environment

Octave uses the values of the following environment variables to set the default values for the
corresponding built-in or internal variables. In addition, the values from the environment may
be overridden by command-line arguments. See Section 2.1.1 [Command Line Options], page 11.
EDITOR See Section 2.4.5 [Commands For History|, page 18.

Built-in variable: EDITOR.
OCTAVE_EXEC_PATH

See Section 35.5 [Controlling Subprocesses|, page 429.

Built-in variable: EXEC_PATH. Command-line argument: --exec-path.
OCTAVE_PATH

See Section 11.7 [Function Files|, page 113.

Internal variable changed by function path. Command-line argument: --path.
OCTAVE_INFO_FILE

See Section 2.3 [Getting Help|, page 14.

Internal variable changed by function info_file. Command-line argument: --

info-file.
OCTAVE_INFO_PROGRAM

See Section 2.3 [Getting Help|, page 14.

Internal variable changed by function info_program. Command-line argument: —-
info-program.

80 GNU Octave

OCTAVE_HISTSIZE
See Section 2.4.5 [Commands For History], page 18.

Built-in variable: history_size.
OCTAVE_HISTFILE
See Section 2.4.5 [Commands For History], page 18.

Built-in variable: history_file.

Chapter 8: Expressions 81

8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates to a
value, which you can print, test, store in a variable, pass to a function, or assign a new value to
a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements contain one
or more expressions which specify data to be operated on. As in other languages, expressions in
Octave include variables, array references, constants, and function calls, as well as combinations
of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or vector.

]

Indices may be scalars, vectors, ranges, or the special operator ‘:’, which may be used to

select entire rows or columns.

Vectors are indexed using a single index expression. Matrices may be indexed using one
or two indices. When using a single index expression, the elements of the matrix are taken
in column-first order; the dimensions of the output match those of the index expression. For
example,

a (2) # a scalar
a (1:2) # a row vector
a ([1; 2]) # a column vector

As a special case, when a colon is used as a single index, the output is a column vector

containing all the elements of the vector or matrix. For example

a (:) # a column vector
Given the matrix
a=[1, 2; 3, 4]
all of the following expressions are equivalent
a (1, [1, 21D
a (1, 1:2)
a (1, @)
and select the first row of the matrix.

Indexing a scalar with a vector of ones can be used to create a vector the same size as the
index vector, with each element equal to the value of the original scalar. For example, the
following statements

a = 13;
a ([1, 1, 1, 1D
produce a vector whose four elements are all equal to 13.
Similarly, indexing a scalar with two vectors of ones can be used to create a matrix. For
example the following statements
a = 13;
a ([1, 11, [1, 1, 1D
create a 2 by 3 matrix with all elements equal to 13.

This is an obscure notation and should be avoided. It is better to use the function ones to
generate a matrix of the appropriate size whose elements are all one, and then to scale it to
produce the desired result. See Section 16.4 [Special Utility Matrices]|, page 203.

It is also possible to create a matrix with different values. The following example creates a
10 dimensional row vector a containing the values a; = V/i.

82 GNU Octave

for i = 1:10
a(i) = sqrt (1);
endfor

Note that it is quite inefficient to create a vector using a loop like the one shown in the example
above. In this particular case, it would have been much more efficient to use the expression
a = sqrt (1:10);
thus avoiding the loop entirely. In cases where a loop is still required, or a number of values
must be combined to form a larger matrix, it is generally much faster to set the size of the
matrix first, and then insert elements using indexing commands. For example, given a matrix
a,
[nr, nc] = size (a);
x = zeros (nr, n * nc);
for i = 1:n
x(:,(i-1)*nc+1:i*nc) = a;
endfor
is considerably faster than
X = a;
for i = 1:n-1
x = [x, al;
endfor
particularly for large matrices because Octave does not have to repeatedly resize the result.

subsref (val, idx) [Built-in Function]
Perform the subscripted element selection operation according to the subscript specified by
idx.
The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’. Valid
values for ‘type’ are ‘" O"’, “"{}"’, and ‘"."". The ‘subs’ field may be either ‘":"’ or a cell
array of index values.
The following example shows how to extract the two first columns of a matrix

val = magic(3)
= val = [

N N O

8
3
4 9
idx.type = "O";
idx.subs = {":", 1:2};
subsref(val, idx)

=[8 1
3 5
4 9]

Note that this is the same as writing val(:,1:2).

See also: subsasgn, substruct.

ind = sub2ind (dims, i, j) [Function File]
ind = sub2ind (dims, si, s2, ..., sN) [Function File]
Convert subscripts into a linear index.

The following example shows how to convert the two-dimensional index (2,3) of a 3-by-3
matrix to a linear index.

linear_index = sub2ind ([3, 3], 2, 3)

= 8

See also: ind2sub.

Chapter 8: Expressions 83

[s1, s2, ..., sN] = ind2sub (dims, ind) [Function File]
Convert a linear index into subscripts.
The following example shows how to convert the linear index 8 in a 3-by-3 matrix into a
subscript.
[r, c] = ind2sub ([3, 3], 8)
= r = 2
c= 3

See also: sub2ind.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it by
name at any point in the program. For example, the function sqrt computes the square root
of a number.

A fixed set of functions are built-in, which means they are available in every Octave program.
The sqrt function is one of these. In addition, you can define your own functions. See Chapter 11
[Functions and Scripts|, page 107, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more than
one argument, they are separated by commas. If there are no arguments, you can omit the
parentheses, but it is a good idea to include them anyway, to clearly indicate that a function
call was intended. Here are some examples:

sqrt (x"2 + y~2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:

sqrt (argument)

Some of the built-in functions take a variable number of arguments, depending on the par-
ticular usage, and their behavior is different depending on the number of arguments supplied.

Like every other expression, the function call has a value, which is computed by the function
based on the arguments you give it. In this example, the value of sqrt (argument) is the
square root of the argument. A function can also have side effects, such as assigning the values
of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example, the
following statement
[u, s, v] = svd (a)
computes the singular value decomposition of the matrix a and assigns the three result matrices
tou, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is allowed
to be a list of variable names or index expressions. See also Section 8.1 [Index Expressions],
page 81, and Section 8.6 [Assignment Ops], page 88.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory before
being passed to the function. There is currently no way to specify that a function parameter
should be passed by reference instead of by value. This means that it is impossible to directly

84 GNU Octave

alter the value of function parameter in the calling function. It can only change the local copy
within the function body. For example, the function

function f (x, n)
while (n-- > 0)
disp (x);
endwhile
endfunction

displays the value of the first argument n times. In this function, the variable n is used as
a temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a function
called as

foo = "bar";
fcn (foo)

you should not think of the argument as being “the variable foo.” Instead, think of the argument
as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

x = rand (1000);

f x);
does not actually force two 1000 by 1000 element matrices to exist unless the function £ modifies
the value of its argument. Then Octave must create a copy to avoid changing the value outside
the scope of the function f, or attempting (and probably failing!) to modify the value of a
constant or the value of a temporary result.

8.2.2 Recursion

With some restrictions!, recursive function calls are allowed. A recursive function is one which
calls itself, either directly or indirectly. For example, here is an inefficient? way to compute the
factorial of a given integer:

function retval = fact (n)
if (n > 0)
retval = n * fact (n-1);
else
retval = 1;
endif
endfunction
This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous call.
Once the argument is no longer greater than zero, it does not call itself, and the recursion ends.
The built-in variable max_recursion_depth specifies a limit to the recursion depth and
prevents Octave from recursing infinitely.

! Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver 1lsode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so 1lsode should not be called either directly or indirectly from within the user-supplied function
that 1sode requires. Doing so will result in an error.

2 Tt would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that the
value n is actually a positive integer.

Chapter 8: Expressions 85

val = max_recursion_depth () [Built-in Function]

old_val = max_recursion_depth (new_val) [Built-in Function]
Query or set the internal limit on the number of times a function may be called recursively.
If the limit is exceeded, an error message is printed and control returns to the top level.

8.3 Arithmetic Operators
The following arithmetic operators are available, and work on scalars and matrices.

x+y Addition. If both operands are matrices, the number of rows and columns must
both agree. If one operand is a scalar, its value is added to all the elements of the
other operand.

X .ty Element by element addition. This operator is equivalent to +.

X -y Subtraction. If both operands are matrices, the number of rows and columns of
both must agree.

X .-y Element by element subtraction. This operator is equivalent to -.

X *xy Matrix multiplication. The number of columns of x must agree with the number of
rows of y.

X .xy Element by element multiplication. If both operands are matrices, the number of

rows and columns must both agree.

x/y Right division. This is conceptually equivalent to the expression
(inverse (y’) * x’)’
but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is singular, a minimum norm
solution is computed.

x./y Element by element right division.

x\y Left division. This is conceptually equivalent to the expression
inverse (x) * y
but it is computed without forming the inverse of x.
If the system is not square, or if the coefficient matrix is singular, a minimum norm

solution is computed.

x \y Element by element left division. Each element of y is divided by each corresponding
element of x.

Xy

X k* y Power operator. If x and y are both scalars, this operator returns x raised to the
power y. If x is a scalar and y is a square matrix, the result is computed using an
eigenvalue expansion. If x is a square matrix, the result is computed by repeated
multiplication if y is an integer, and by an eigenvalue expansion if y is not an integer.
An error results if both x and y are matrices.
The implementation of this operator needs to be improved.

x."y

X kky Element by element power operator. If both operands are matrices, the number of
rows and columns must both agree.

-x Negation.

+x Unary plus. This operator has no effect on the operand.

86 GNU Octave

x’ Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to the
expression

conj (x.7)
x.’ Transpose.

Note that because Octave’s element by element operators begin with a ‘.’, there is a possible
ambiguity for statements like
1./m
because the period could be interpreted either as part of the constant or as part of the operator.
To resolve this conflict, Octave treats the expression as if you had typed

1) ./ m
and not
(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually prefers
to break the input into tokens by preferring the longest possible match at any given point, it is
more useful in this case.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.
All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0 if it
is false. For matrix values, they all work on an element-by-element basis. For example,
(1, 2; 3, 4] == [1, 3; 2, 4]
= 1 0
0 1

If one operand is a scalar and the other is a matrix, the scalar is compared to each element
of the matrix in turn, and the result is the same size as the matrix.

x<y True if x is less than y.

x <=y True if x is less than or equal to y.

x == True if x is equal to y.

x>=y True if x is greater than or equal to y.
x>y True if x is greater than y.

x!l=y

x "=y

x <>y True if x is not equal to y.

String comparisons may also be performed with the strcmp function, not with the comparison
operators listed above. See Chapter 5 [Strings|, page 41.

isequal (x1,x2,...) [Function File]
Return true if all of x1, x2, ... are equal.

See also: isequalwithequalnans.

isequalwithequalnans (x1, x2, ...) [Function File]
Assuming NaN == NaN, return true if all of x1, x2, ... are equal.

See also: isequal.

Chapter 8: Expressions 87

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to control
nesting. The truth of the boolean expression is computed by combining the truth values of the
corresponding elements of the component expressions. A value is considered to be false if it is
zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions can
be used. They can be used in if and while statements. However, if a matrix value used as the
condition in an if or while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element boolean expression also
has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

booleanl & boolean2
Elements of the result are true if both corresponding elements of booleanl and
boolean2 are true.

booleanl | boolean2
Elements of the result are true if either of the corresponding elements of booleanl
or boolean?2 is true.

! boolean
~ boolean
Each element of the result is true if the corresponding element of boolean is false.

For matrix operands, these operators work on an element-by-element basis. For example, the

expression
[1, 0; 0, 11 & [1, 0; 2, 3]
returns a two by two identity matrix.

For the binary operators, the dimensions of the operands must conform if both are matrices.
If one of the operands is a scalar and the other a matrix, the operator is applied to the scalar
and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions booleanl and
boolean2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & b++
the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-valued
operands.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Octave’s
element-by-element boolean operators are often sufficient for performing most logical operations.
However, it is sometimes desirable to stop evaluating a boolean expression as soon as the overall
truth value can be determined. Octave’s short-circuit boolean operators work this way.

booleanl && booleanZ2
The expression booleanl is evaluated and converted to a scalar using the equivalent
of the operation all (booleani (:)). Ifit is false, the result of the overall expression

838 GNU Octave

is 0. If it is true, the expression boolean? is evaluated and converted to a scalar
using the equivalent of the operation all (boolean1 (:)). If it is true, the result of
the overall expression is 1. Otherwise, the result of the overall expression is 0.
Warning: there is one exception to the rule of evaluating all (booleani (:)), which
is when booleanl is the empty matrix. The truth value of an empty matrix is always
false so [] && true evaluates to false even though all ([]) is true.

booleanl || boolean2
The expression booleanl is evaluated and converted to a scalar using the equivalent
of the operation all (booleani (:)). If it is true, the result of the overall expression
is 1. If it is false, the expression boolean2 is evaluated and converted to a scalar
using the equivalent of the operation all (booleani (:)). If it is true, the result of
the overall expression is 1. Otherwise, the result of the overall expression is 0.

Warning: the truth value of an empty matrix is always false, see the previous list
item for details.
The fact that both operands may not be evaluated before determining the overall truth value
of the expression can be important. For example, in the expression
a && b++
the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, ¢)
if (nargin > 2 &% isstr (c))

instead of having to use two if statements to avoid attempting to evaluate an argument that
doesn’t exist. For example, without the short-circuit feature, it would be necessary to write

function f (a, b, c)
if (nargin > 2)
if (isstr (c))

Writing
function f (a, b, c)
if (nargin > 2 & isstr (c))

would result in an error if £ were called with one or two arguments because Octave would be
forced to try to evaluate both of the operands for the operator ‘&’.

8.6 Assignment Expressions
An assignment is an expression that stores a new value into a variable. For example, the following
expression assigns the value 1 to the variable z:

z =1
After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=" sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would store
the value "this food is good" in the variable message:
thing = "food"
predicate = "good"
message = ["this " , thing , " is " , predicate]

(This also illustrates concatenation of strings.)

Chapter 8: Expressions 89

Most operators (addition, concatenation, and so on) have no effect except to compute a
value. If you ignore the value, you might as well not use the operator. An assignment operator
is different. It does produce a value, but even if you ignore the value, the assignment still makes
itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],
page 71). It can also be an element of a matrix (see Section 8.1 [Index Expressions|, page 81) or
a list of return values (see Section 8.2 [Calling Functions], page 83). These are all called Ivalues,
which means they can appear on the left-hand side of an assignment operator. The right-hand
operand may be any expression. It produces the new value which the assignment stores in the
specified variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a variable is
simply the type of whatever value it happens to hold at the moment. In the following program
fragment, the variable foo has a numeric value at first, and a string value later on:

octave:13> foo = 1

foo =1
octave:13> foo = "bar"
foo = bar

When the second assignment gives foo a string value, the fact that it previously had a numeric
value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced by
the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) =5
sets all the elements in the second column of a to 5.

Assigning an empty matrix ‘[1’ works in most cases to allow you to delete rows or columns
of matrices and vectors. See Section 4.1.1 [Empty Matrices], page 32. For example, given a 4
by 5 matrix A, the assignment

A (3,) =1]

deletes the third row of A, and the assignment
A (:, 1:2:5) =[]

deletes the first, third, and fifth columns.

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the value
1. One consequence of this is that you can write multiple assignments together:

x=y=2=0

stores the value 0 in all three variables. It does this because the value of z = 0, which is 0, is
stored into y, and then the value of y = z = 0, which is 0, is stored into x.

This is also true of assignments to lists of values, so the following is a valid expression
[a, b, c] = [u, s, v] = svd (a)
that is exactly equivalent to

[u, s, v] = svd (a)

a=u
b=s
c=v

In expressions like this, the number of values in each part of the expression need not match.
For example, the expression

[a, b] = [u, s, v] = svd (a)

is equivalent to

90 GNU Octave

[u, s, v] = svd (a)
a=u
b =s

The number of values on the left side of the expression can, however, not exceed the number of
values on the right side. For example, the following will produce an error.

a, b, ¢, d]l = [u, s, v] = svd (a)
- error: element number 4 undefined in return list
-1 error: evaluating assignment expression near line 8, column 15

A very common programming pattern is to increment an existing variable with a given value,
like this

a=a+ 2;
This can be written in a clearer and more condensed form using the += operator
a += 2;

Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form

exprl op= expr2
is evaluated as
exprl = (exprl) op (expr2)
where op can be either +, -, *, or /. So, the expression
a *= b+l
is evaluated as
a=a * (b+l)
and not
a=ax*xb+1

You can use an assignment anywhere an expression is called for. For example, it is valid to
write x != (y = 1) to set y to 1 and then test whether x equals 1. But this style tends to make
programs hard to read. Except in a one-shot program, you should rewrite it to get rid of such
nesting of assignments. This is never very hard.

subsasgn (val, idx, rhs) [Built-in Function]
Perform the subscripted assignment operation according to the subscript specified by idx.

The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’. Valid
values for ‘type’ are ‘" O"’, “"{}"’, and ‘"."". The ‘subs’ field may be either *":"’ or a cell
array of index values.

The following example shows how to set the two first columns of a 3-by-3 matrix to zero.

val = magic(3);
idx.type = "O";
idx.subs = {":", 1:2};
subsasgn (val, idx, 0)
= [0 0 6
0 0 7
0 0 2]

Note that this is the same as writing val(:,1:2) = 0.

See also: subsref, substruct.

Chapter 8: Expressions 91

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to increment
a variable is written as ‘++’. It may be used to increment a variable either before or after taking
its value.

For example, to pre-increment the variable x, you would write ++x. This would add one to
x and then return the new value of x as the result of the expression. It is exactly the same as
the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x, but
returns the value that x had prior to incrementing it. For example, if x is equal to 2, the result
of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the expression is the new
value of x. It is equivalent to the expression x = x + 1.

--X This expression decrements the variable x. The value of the expression is the new
value of x. It is equivalent to the expression x = x - 1.

X++ This expression causes the variable x to be incremented. The value of the expression
is the old value of x.

x-= This expression causes the variable x to be decremented. The value of the expression
is the old value of x.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators appear
close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the expression
a + b * ¢ means to multiply b and c, and then add a to the product (i.e., a + (b * ¢)).

You can overrule the precedence of the operators by using parentheses. You can think of the
precedence rules as saying where the parentheses are assumed if you do not write parentheses
yourself. In fact, it is wise to use parentheses whenever you have an unusual combination of
operators, because other people who read the program may not remember what the precedence
is in this case. You might forget as well, and then you too could make a mistake. Explicit
parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups first,
except for the assignment and exponentiation operators, which group in the opposite order.
Thus, the expression a - b + ¢ groups as (a = b) + c, but the expression a = b = ¢ groups as a
= (b =c¢).

The precedence of prefix unary operators is important when another operator follows the
operand. For example, -x"2 means -(x"2), because ‘-’ has lower precedence than

(~
Here is a table of the operators in Octave, in order of increasing precedence.

statement separators

[R
PRI

assignment
(=7 ¢

, =70 == x=" /=" This operator groups right to left.

logical "or" and "and"
4| |7’ c&&7.

92 GNU Octave

element-wise "or" and "and"
1Y cp,?
|7, ‘&’.

relational

colon

add, subtract

multiply, divide
4*7 (/7 4\7 4 \’ 4 *7 3 /7

transpose

unary plus, minus, increment, decrement, and ¢ ‘not’’
g) ¢ 7 LY
+7_7++7__7 !) .
exponentiation

(~) [4 7 C o~ ¢)
, kT e,

Chapter 9: Evaluation 93

9 Evaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by asking
Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed and
stored in a string, which is exactly what the eval lets you do.

eval (try, catch) [Built-in Function]
Parse the string try and evaluate it as if it were an Octave program. If that fails, evaluate
the optional string catch. The string try is evaluated in the current context, so any results
remain available after eval returns.

The following example makes the variable a with the approximate value 3.1416 available.
eval("a = acos(-1);");
If an error occurs during the evaluation of try the catch string is evaluated, as the following
example shows.
eval (Cerror ("This is a bad example");’,
’printf ("This error occurred:\n%s", lasterr ());’);

< This error occurred:
error: This is a bad example

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This is
useful when writing a function that need to call user-supplied functions. The feval function
takes the name of the function to call as its first argument, and the remaining arguments are
given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

94 GNU Octave

function result = newtroot (fname, x)

usage: newtroot (fname, x)
#
fname : a string naming a function f(x).
x : initial guess
delta = tol = sqrt (eps);
maxit = 200;
fx = feval (fname, x);
for i = 1l:maxit
if (abs (fx) < tol)
result = x;
return;
else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;
x = x - fx / deriv;
fx = fx_new;
endif
endfor
result = x;
endfunction

Note that this is only meant to be an example of calling user-supplied functions and should
not be taken too seriously. In addition to using a more robust algorithm, any serious code would
check the number and type of all the arguments, ensure that the supplied function really was
a function, etc. See Section 4.6 [Predicates for Numeric Objects|, page 38, for example, for a
list of predicates for numeric objects, and see Section 7.3 [Status of Variables|, page 74, for a
description of the exist function.

feval (name, ...) [Built-in Function]
Evaluate the function named name. Any arguments after the first are passed on to the named
function. For example,

feval ("acos", -1)
= 3.1416

calls the function acos with the argument ‘-1’

The function feval is necessary in order to be able to write functions that call user-supplied
functions, because Octave does not have a way to declare a pointer to a function (like C) or
to declare a special kind of variable that can be used to hold the name of a function (like
EXTERNAL in Fortran). Instead, you must refer to functions by name, and use feval to call
them.

A similar function run exists for calling user script files, that are not necessarily on the user
path

run (f) [Function File]

run f [Command|
Run scripts in the current workspace that are not necessarily on the path. If f is the script
to run, including its path, then run change the directory to the directory where f is found.
run then executes the script, and returns to the original directory.

Chapter 9: Evaluation 95

See also: system.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list of
function parameters and a couple of predefined variables such as nargin. Expressions inside the
function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in your
own context. This allows you to use a pass-by-name style of function, which is similar to using
a pointer in programming languages such as C.

Consider how you might write save and load as m-files. For example,

function create_data
x = linspace (0, 10, 10);
y = sin (x);
save mydata x y
endfunction

With evalin, you could write save as follows:

function save (file, namel, name2)
f = open_save_file (file);
save_var(f, namel, evalin ("caller", namel));
save_var(f, name2, evalin ("caller", name2));
endfunction

Here, ‘caller’ is the create_data function and name1l is the string "x", which evaluates simply
as the value of x.

You later want to load the values back from mydata in a different context:

function process_data
load mydata
. do work ...
endfunction

With assignin, you could write load as follows:

function load (file)
f = open_load_file (file);
[name, val] = load_var (f);
assignin ("caller", name, val);
[name, val] = load_var (f);
assignin ("caller", name, val);
endfunction

Here, ‘caller’ is the process_data function.

You can set and use variables at the command prompt using the context ‘base’ rather than
‘caller’.

These functions are rarely used in practice. One example is the fail (‘code’, ‘pattern’)
function which evaluates ‘code’ in the caller’s context and checks that the error message it
produces matches the given pattern. Other examples such as save and load are written in C++
where all octave variables are in the ‘caller’ context and evalin is not needed.

evalin (context, try, catch) [Built-in Function]
Like eval, except that the expressions are evaluated in the context context, which may be
either "caller" or "base".

96 GNU Octave

assignin (context, varname, value) [Built-in Function]
Assign value to varname in context context, which may be either "base" or "caller".

Chapter 10: Statements 97

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while, to
distinguish them from simple expressions. Many control statements contain other statements;
for example, the if statement contains another statement which may or may not be executed.

Each control statement has a corresponding end statement that marks the end of the end of
the control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a more
specific end keyword is expected, but using the more specific keywords is preferred because if
you use them, Octave is able to provide better diagnostics for mismatched or missing end tokens.

The list of statements contained between keywords like if or while and the corresponding
end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an if
statement. In its simplest form, it looks like this:

if (condition)
then-body
endif

condition is an expression that controls what the rest of the statement will do. The then-body
is executed only if condition is true.

The condition in an if statement is considered true if its value is non-zero, and false if its
value is zero. If the value of the conditional expression in an if statement is a vector or a
matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

The second form of an if statement looks like this:

if (condition)
then-body
else
else-body
endif

If condition is true, then-body is executed; otherwise, else-body is executed.
Here is an example:
if (rem (x, 2) == 0)
printf ("x is even\n");
else

printf ("x is odd\n");
endif

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is divisible
by 2), then the first printf statement is evaluated, otherwise the second printf statement is
evaluated.

The third and most general form of the if statement allows multiple decisions to be combined
in a single statement. It looks like this:

98 GNU Octave

if (condition)
then-body

elseif (condition)
elseif-body

else
else-body

endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is found
to be true, its corresponding body is executed. If none of the conditions are true and the else
clause is present, its body is executed. Only one else clause may appear, and it must be the
last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible by
2), then the first printf statement is executed. If it is false, then the second condition is tested,
and if it is true (that is, the value of x is divisible by 3), then the second printf statement is
executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");
elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");
else
printf ("x is odd\n");
endif
Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If it is,
the space between the else and if will tell Octave to treat this as a new if statement within
another if statement’s else clause. For example, if you write
if (c1)
body-1
else if (c2)
body-2
endif
Octave will expect additional input to complete the first if statement. If you are using Octave
interactively, it will continue to prompt you for additional input. If Octave is reading this input
from a file, it may complain about missing or mismatched end statements, or, if you have not
used the more specific end statements (endif, endfor, etc.), it may simply produce incorrect
results, without producing any warning messages.
It is much easier to see the error if we rewrite the statements above like this,
if (c1)
body-1
else
if (c2)
body-2
endif
using the indentation to show how Octave groups the statements. See Chapter 11 [Functions
and Scripts], page 107.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X == 1)

Chapter 10: Statements 99

do_something ();
elseif (X == 2)
do_something_else ();
else
do_something_completely_different ();
endif
This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above example
becomes

switch (X)
case 1
do_something ();
case 2
do_something_else ();
otherwise
do_something_completely_different ();
endswitch
This code makes the repetitive structure of the problem more explicit, making the code easier to
read, and hence maintain. Also, if the variable X should change it’s name, only one line would
need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch expression
case label

command_list
case label

command_1list

otherwise
command_1list
endswitch
where label can be any expression. However, duplicate label values are not detected, and only
the command_list corresponding to the first match will be executed. For the switch statement
to be meaningful at least one case label command_list clause must be present, while the
otherwise command_list clause is optional.

If label is a cell array the corresponding command_list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable is
either 6 or 7.

A=T7;
switch A

case { 6, 7 }
printf ("variable is either 6 or 7\n");

otherwise
printf ("variable is neither 6 nor 7\n");

endswitch
As with all other specific end keywords, endswitch may be replaced by end, but you can get
better diagnostics if you use the specific forms.
One advantage of using the switch statement compared to using if statements is that the
labels can be strings. If an if statement is used it is not possible to write

100 GNU Octave

if (X == "a string") # This is NOT valid
since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement, and it
is possible to write programs that look like this
switch (X)
case "a string"
do_something

enéé%itch
10.2.1 Notes for the C programmer

The switch statement is also available in the widely used C programming language. There are,
however, some differences between the statement in Octave and C
e (Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement of
the C language.
e The command_list elements are not optional. Making the list optional would have meant
requiring a separator between the label and the command list. Otherwise, things like
switch (foo)
case (1) -2

would produce surprising results, as would

switch (foo)
case (1)
case (2)

doit)

particularly for C programmers. If doit() should be executed if foo is either 1 or 2, the
above code should be written with a cell array like this

switch (foo)
case {1, 2}
doit)

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed two or
more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes a
statement as long as a condition is true. As with the condition in an if statement, the condition
in a while statement is considered true if its value is non-zero, and false if its value is zero. If the
value of the conditional expression in a while statement is a vector or a matrix, it is considered
true only if it is non-empty and all of the elements are non-zero.

Octave’s while statement looks like this:

while (condition)
body
endwhile
Here body is a statement or list of statements that we call the body of the loop, and condition
is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes

the statement body. After body has been executed, condition is tested again, and if it is still

Chapter 10: Statements 101

true, body is executed again. This process repeats until condition is no longer true. If condition
is initially false, the body of the loop is never executed.

This example creates a variable £ib that contains the first ten elements of the Fibonacci
sequence.
fib = ones (1, 10);
i= 3;
while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile
Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether i is
less than or equal to 10. This is the case when i equals 3, so the value of the i-th element of
fib is set to the sum of the previous two values in the sequence. Then the i++ increments the
value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.

10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly executes
a statement until a condition becomes true, and the test of the condition is at the end of the
loop, so the body of the loop is always executed at least once. As with the condition in an if
statement, the condition in a do-until statement is considered true if its value is non-zero, and
false if its value is zero. If the value of the conditional expression in a do-until statement is
a vector or a matrix, it is considered true only if it is non-empty and all of the elements are
non-zero.

Octave’s do—until statement looks like this:

do
body
until (condition)

Here body is a statement or list of statements that we call the body of the loop, and condition
is an expression that controls how long the loop keeps running.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.
fib
i =
do
i++;
fib (i) = fib (i-1) + fib (i-2);
until (1 == 10)
A newline is not required between the do keyword and the body; but using one makes the
program clearer unless the body is very simple.

= ones (1, 10);
2;

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general form of
the for statement looks like this:

for var = expression

body
endfor

102 GNU Octave

where body stands for any statement or list of statements, expression is any valid expression, and
var may take several forms. Usually it is a simple variable name or an indexed variable. If the
value of expression is a structure, var may also be a vector with two elements. See Section 10.5.1
[Looping Over Structure Elements|, page 102, below.

The assignment expression in the for statement works a bit differently than Octave’s normal
assignment statement. Instead of assigning the complete result of the expression, it assigns each
column of the expression to var in turn. If expression is a range, a row vector, or a scalar, the
value of var will be a scalar each time the loop body is executed. If var is a column vector or a
matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten elements
of the Fibonacci sequence, this time using the for statement:

fib = ones (1, 10);
for i = 3:10

fib (i) = fib (i-1) + fib (i-2);
endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3 to
10 inclusive. Then the variable i is assigned the first element of the range and the body of the
loop is executed once. When the end of the loop body is reached, the next value in the range
is assigned to the variable i, and the loop body is executed again. This process continues until
there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for statement.
For example consider

disp("Loop over a matrix")
for i = [1,3;2,4]
i
endfor
disp("Loop over a cell array")
for i = {1,"two";"three",4}
i
endfor
In this case the variable i takes on the value of the columns of the matrix or cell matrix. So the
first loop iterates twice, producing two column vectors [1;2], followed by [3;4], and likewise
for the loop over the cell array. This can be extended to loops over multidimensional arrays.
For example

a = [1,3;2,4]; b = cat(3, a, 2*a);
for i = ¢

i
endfor

In the above case, the multidimensional matrix c¢ is reshaped to a two dimensional matrix as
reshape (c, rows(c), prod(size(c)(2:end))) and then the same behavior as a loop over a
two dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has both
statements because often a for loop is both less work to type and more natural to think of.
Counting the number of iterations is very common in loops and it can be easier to think of this
counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements

A special form of the for statement allows you to loop over all the elements of a structure:

Chapter 10: Statements 103

for [val, key] = expression
body
endfor

In this form of the for statement, the value of expression must be a structure. If it is, key and
val are set to the name of the element and the corresponding value in turn, until there are no
more elements. For example,

x.a=1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val
endfor
- key = a
- val =1
- key =D
- val =
_{
o 1 2
- 3 4
_|
- key = ¢
- val = string

The elements are not accessed in any particular order. If you need to cycle through the list
in a particular way, you will have to use the function fieldnames and sort the list yourself.

The key variable may also be omitted. If it is, the brackets are also optional. This is useful
for cycling through the values of all the structure elements when the names of the elements do
not need to be known.

10.6 The break Statement

The break statement jumps out of the innermost for or while loop that encloses it. The break
statement may only be used within the body of a loop. The following example finds the smallest
divisor of a given integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)
break;
endif
div++;
endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of Jd is %d\n", num, div)
else
printf ("%d is prime\n", num);
endif

When the remainder is zero in the first while statement, Octave immediately breaks out of
the loop. This means that Octave proceeds immediately to the statement following the loop

104 GNU Octave

and continues processing. (This is very different from the exit statement which stops the entire
Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition of a
while statement could just as well be replaced with a break inside an if:

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;
endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;
endif
endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside for or while loops. It skips over the
rest of the loop body, causing the next cycle around the loop to begin immediately. Contrast
this with break, which jumps out of the loop altogether. Here is an example:

print elements of a vector of random
integers that are even.

first, create a row vector of 10 random
integers with values between O and 100:

vec = round (rand (1, 10) * 100);
print what we’re interested in:

for x = vec
if (rem (x, 2) !'= 0)
continue;
endif
printf ("%d\n", x);
endfor

If one of the elements of vec is an odd number, this example skips the print statement for
that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:

for x = vec
if (rem (x, 2) == 0)
printf ("%d\n", x);
endif
endfor

Chapter 10: Statements 105

10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modelled after the unwind-protect form
of Lisp.
The general form of an unwind_protect block looks like this:

unwind_protect
body
unwind_protect_cleanup
cleanup
end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or com-
mands. The statements in cleanup are guaranteed to be executed regardless of how control exits
body.

This is useful to protect temporary changes to global variables from possible errors. For exam-
ple, the following code will always restore the original value of the global variable frobnositcate
even if an error occurs while performing the indexing operation.

save_frobnosticate = frobnosticate;
unwind_protect
frobnosticate = true;

unwind_protect_cleanup
frobnosticate = save_frobnosticate;
end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while performing the indexing operation because evaluation would stop at the point of the error
and the statement to restore the value would not be executed.

10.9 The try Statement

In addition to unwind_protect, Octave supports another limited form of exception handling.
The general form of a try block looks like this:

try

body
catch

cleanup
end_try_catch

where body and cleanup are both optional and may contain any Octave expressions or com-
mands. The statements in cleanup are only executed if an error occurs in body.

No warnings or error messages are printed while body is executing. If an error does occur
during the execution of body, cleanup can use the function lasterr to access the text of the
message that would have been printed. This is the same as eval (try, catch) but it is more
efficient since the commands do not need to be parsed each time the try and catch statements
are evaluated. See Chapter 12 [Errors and Warnings|, page 125, for more information about the
lasterr function.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell Octave
to ignore the newline character in order to continue a statement from one line to the next. Lines
that end with the characters ... or \ are joined with the following line before they are divided
into tokens by Octave’s parser. For example, the lines

106 GNU Octave

x = long_variable_name
+ longer_variable_name \
- 42
form a single statement. The backslash character on the second line above is interpreted as a
continuation character, not as a division operator.

For continuation lines that do not occur inside string constants, whitespace and comments
may appear between the continuation marker and the newline character. For example, the
statement

X = long_variable_name ... # comment one
+ longer_variable_name \ # comment two
- 42 # last comment

is equivalent to the one shown above. Inside string constants, the continuation marker must
appear at the end of the line just before the newline character.

Input that occurs inside parentheses can be continued to the next line without having to use
a continuation marker. For example, it is possible to write statements like

if (fine_dining_destination == on_a_boat
|| fine_dining destination == on_a_train)
seuss (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);
endif

without having to add to the clutter with continuation markers.

Chapter 11: Functions and Script Files 107

11 Functions and Script Files

Complicated Octave programs can often be simplified by defining functions. Functions can be
defined directly on the command line during interactive Octave sessions, or in external files, and
can be called just like built-in functions.

11.1 Defining Functions

In its simplest form, the definition of a function named name looks like this:

function name
body
endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and underscores,
not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup
printf ("\a");
endfunction
The printf statement (see Chapter 14 [Input and Output], page 137) simply tells Octave to
print the string "\a". The special character ‘\a’ stands for the alert character (ASCII 7). See
Chapter 5 [Strings|, page 41.

Once this function is defined, you can ask Octave to evaluate it by typing the name of the
function.

Normally, you will want to pass some information to the functions you define. The syntax
for passing parameters to a function in Octave is

function name (arg-list)
body
endfunction

where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list of
arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the wakeup to look like
this:

function wakeup (message)
printf ("\aJs\n", message);
endfunction

Calling this function using a statement like this
wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’; followed
by a newline character (the ‘\n’ in the first argument to the printf statement).

In most cases, you will also want to get some information back from the functions you define.
Here is the syntax for writing a function that returns a single value:

function ret-var = name (arg-list)
body
endfunction

108 GNU Octave

The symbol ret-var is the name of the variable that will hold the value to be returned by the
function. This variable must be defined before the end of the function body in order for the
function to return a value.

Variables used in the body of a function are local to the function. Variables named in arg-
list and ret-var are also local to the function. See Section 7.1 [Global Variables|, page 71, for
information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)
retval = sum (v) / length (v);
endfunction

If we had written avg like this instead,

function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);
endif
endfunction

and then called the function with a matrix instead of a vector as the argument, Octave would
have printed an error message like this:

error: ‘retval’ undefined near line 1 column 10
error: evaluating index expression near line 7, column 1

because the body of the if statement was never executed, and retval was never defined. To
prevent obscure errors like this, it is a good idea to always make sure that the return variables will
always have values, and to produce meaningful error messages when problems are encountered.
For example, avg could have been written like this:

function retval = avg (v)
retval = 0;
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

There is still one additional problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message that
won’t really help you track down the source of the error. To allow you to catch errors like this,
Octave provides each function with an automatic variable called nargin. Each time a function
is called, nargin is automatically initialized to the number of arguments that have actually been
passed to the function. For example, we might rewrite the avg function like this:

function retval = avg (v)
retval = 0;
if (nargin != 1)
usage ("avg (vector)");
endif
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

Chapter 11: Functions and Script Files 109

Although Octave does not automatically report an error if you call a function with more
arguments than expected, doing so probably indicates that something is wrong. Octave also
does not automatically report an error if a function is called with too few arguments, but any
attempt to use a variable that has not been given a value will result in an error. To avoid such
problems and to provide useful messages, we check for both possibilities and issue our own error
message.

nargin () [Built-in Function]

nargin (fcn_name) [Built-in Function]
Within a function, return the number of arguments passed to the function. At the top level,
return the number of command line arguments passed to Octave. If called with the optional
argument fcn_name, return the maximum number of arguments the named function can
accept, or -1 if the function accepts a variable number of arguments.

See also: nargout, varargin, varargout.

inputname (n) [Function File]
Return the text defining n-th input to the function.

val = silent_functions () [Built-in Function]

old_val = silent_functions (new_val) [Built-in Function]
Query or set the internal variable that controls whether internal output from a function is
suppressed. If this option is disabled, Octave will display the results produced by evaluating
expressions within a function body that are not terminated with a semicolon.

11.2 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return more
than one value. The syntax for defining functions that return multiple values is

function [ret-list] = name (arg-list)
body
endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The list of
return values must have at least one element. If ret-list has only one element, this form of the
function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a vector
and the index of its first occurrence in the vector.

function [max, idx] = vmax (v)

idx = 1;
max = v (idx);
for i = 2:length (v)

if (v (i) > max)
max = v (i);
idx = i;
endif
endfor
endfunction

In this particular case, the two values could have been returned as elements of a single array,
but that is not always possible or convenient. The values to be returned may not have compatible
dimensions, and it is often desirable to give the individual return values distinct names.

110 GNU Octave

In addition to setting nargin each time a function is called, Octave also automatically ini-
tializes nargout to the number of values that are expected to be returned. This allows you to
write functions that behave differently depending on the number of values that the user of the
function has requested. The implicit assignment to the built-in variable ans does not figure in
the count of output arguments, so the value of nargout may be zero.

The svd and 1u functions are examples of built-in functions that behave differently depending
on the value of nargout.

It is possible to write functions that only set some return values. For example, calling the
function

function [x, y, z] = £ ()
x =1;
z = 2;
endfunction
as
[a, b, c] = O
produces:

a=1

b = [1(0x0)

c =2

along with a warning.

nargout () [Built-in Function]

nargout (fcn_name) [Built-in Function]
Within a function, return the number of values the caller expects to receive. If called with
the optional argument fcn_name, return the maximum number of values the named function
can produce, or -1 if the function can produce a variable number of values.

For example,

f 0O
will cause nargout to return O inside the function f and
[s, t] = O

will cause nargout to return 2 inside the function f.
At the top level, nargout is undefined.

See also: nargin, varargin, varargout.

nargchk (nargin_min, nargin_max, n) [Function File]
If n is in the range nargin_min through nargin_max inclusive, return the empty matrix.
Otherwise, return a message indicating whether n is too large or too small.

This is useful for checking to see that the number of arguments supplied to a function is
within an acceptable range.

11.3 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As an
example think of a function that returns the smallest of all its input arguments. For example,

a = smallest (1, 2, 3);
b = smallest (1, 2, 3, 4);

In this example both a and b would be 1. One way to write the smallest function is

Chapter 11: Functions and Script Files 111

function val = smallest (argl, arg2, arg3, arg4, argb)
body
endfunction
and then use the value of nargin to determine which of the input arguments should be con-
sidered. The problem with this approach is that it can only handle a limited number of input
arguments.

Octave supports the varargin keyword for handling a variable number of input arguments.
Using varargin the function looks like this

function val = smallest (varargin)
body
endfunction
In the function body the input arguments can be accessed through the variable varargin. This
variable is a cell array containing all the input arguments. See Section 6.2 [Cell Arrays]|, page 62,
for details on working with cell arrays. The smallest function can now be defined like this

function val = smallest (varargin)
val = min ([varargin{:}]);
endfunction
This implementation handles any number of input arguments, but it’s also a very simple solution
to the problem.
A slightly more complex example of varargin is a function print_arguments that prints all
input arguments. Such a function can be defined like this

function print_arguments (varargin)
for i = 1:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin{il});
endfor
endfunction
This function produces output like this
print_arguments (1, "two", 3);
- Input argument 1: 1
- Input argument 2: two
- Input argument 3: 3

[reg, prop] = parseparams (params) [Function File]
Return in reg the cell elements of param up to the first string element and in prop all
remaining elements beginning with the first string element. For example

[reg, prop] = parseparams ({1, 2, "linewidth", 10})

reg =
{
(1,11 =1
[1,2] =2
b
prop =
{

[1,1] = linewidth
[1,2] 10

}

The parseparams function may be used to separate 'regular’ arguments and additional argu-
ments given as property/value pairs of the varargin cell array.

See also: varargin.

112 GNU Octave

11.4 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a syntax
that’s similar to the one used with the varargin keyword. To let a function return a variable
number of output arguments the varargout keyword is used. As with varargin varargout is
a cell array that will contain the requested output arguments.

As an example the following function sets the first output argument to 1, the second to 2,
and so on.

function varargout = one_to_n ()
for i = l:nargout
varargout{i} = i;
endfor
endfunction

When called this function returns values like this

[a, b, c] = one_to_n ()

a= 1

= b= 2

= c 3
[r1, r2, ..., rn] = deal (a) [Function File]
[r1, r2, ..., rn] = deal (ail, a2, ..., an) [Function File]

Copy the input parameters into the corresponding output parameters. If only one input
parameter is supplied, its value is copied to each of the outputs.

For example,

[a, b, c] deal (%, y, 2z);

is equivalent to

a = x;
= y;
c = z;
and
[a, b, c] = deal (x);

is equivalent to

a=b=c=zx;

11.5 Returning From a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave’s return statement cannot be used to return a
value from a function. Instead, you must assign values to the list of return variables that are
part of the function statement. The return statement simply makes it easier to exit a function
from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.

Chapter 11: Functions and Script Files 113

function retval = any_nonzero (v)
retval = 0;
for i = 1l:length (v)
if (v (1) '= 0)
retval = 1;
return;
endif
endfor
printf ("no nonzero elements found\n");
endfunction
Note that this function could not have been written using the break statement to exit the
loop once a nonzero value is found without adding extra logic to avoid printing the message if
the vector does contain a nonzero element.

return [Keyword]
When Octave encounters the keyword return inside a function or script, it returns control to
the caller immediately. At the top level, the return statement is ignored. A return statement
is assumed at the end of every function definition.

11.6 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list it is
possible to assign a default value to the argument like this
function name (argl = vall, ...)
body
endfunction
If no value is assigned to argl by the user, it will have the value vall.
As an example, the following function implements a variant of the classic “Hello, World”
program.
function hello (who = "World")
printf ("Hello, %s'\n", who);
endfunction
When called without an input argument the function prints the following

hello O;
- Hello, World!
and when it’s called with an input argument it prints the following
hello ("Beautiful World of Free Software");
< Hello, Beautiful World of Free Software!
Sometimes it is useful to explicitly tell Octave to use the default value of an input argument.
This can be done writing a ‘:’ as the value of the input argument when calling the function.
hello (:);
- Hello, World!

11.7 Function Files

FExcept for simple one-shot programes, it is not practical to have to define all the functions you
need each time you need them. Instead, you will normally want to save them in a file so that
you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them. You
simply need to put the function definitions in a place where Octave can find them.

114 GNU Octave

When Octave encounters an identifier that is undefined, it first looks for variables or functions
that are already compiled and currently listed in its symbol table. If it fails to find a definition
there, it searches a list of directories (the path) for files ending in ‘.m’ that have the same base
name as the undefined identifier.! Omnce Octave finds a file with a name that matches, the
contents of the file are read. If it defines a single function, it is compiled and executed. See
Section 11.8 [Script Files|, page 118, for more information about how you can define more than
one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it read
and the time stamp on the file. If the time stamp on the file changes, Octave may reload the
file. When Octave is running interactively, time stamp checking normally happens at most once
each time Octave prints the prompt. Searching for new function definitions also occurs if the
current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your Octave
session.

To avoid degrading performance unnecessarily by checking the time stamps on functions
that are not likely to change, Octave assumes that function files in the directory tree ‘octave-
home /share/octave/version/m’ will not change, so it doesn’t have to check their time stamps
every time the functions defined in those files are used. This is normally a very good assumption
and provides a significant improvement in performance for the function files that are distributed
with Octave.

If you know that your own function files will not change while you are running Octave, you
can improve performance by calling ignore_function_time_stamp ("all"), so that Octave
will ignore the time stamps for all function files. Passing "system" to this function resets the
default behavior.

mfilename () [Built-in Function]
mfilename ("fullpath") [Built-in Function]
mfilename ("fullpathext") [Built-in Function]

Return the name of the currently executing file. At the top-level, return the empty string.
Given the argument "fullpath", include the directory part of the file name, but not the
extension. Given the argument "fullpathext", include the directory part of the file name
and the extension.

val = ignore_function_time_stamp () [Built-in Function]

old_val = ignore_function_time_stamp (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave checks the time stamp on
files each time it looks up functions defined in function files. If the internal variable is
set to "system", Octave will not automatically recompile function files in subdirectories of
‘octave-home/lib/version’ if they have changed since they were last compiled, but will
recompile other function files in the search path if they change. If set to "all", Octave will
not recompile any function files unless their definitions are removed with clear. If set to
"none", Octave will always check time stamps on files to determine whether functions defined
in function files need to be recompiled.

11.7.1 Manipulating the load path

When a function is called Octave searches a list of directories for a file that contains the function
declaration. This list of directories is known as the load path. By default the load path contains
a list of directories distributed with Octave plus the current working directory. To see your
current load path call the path function without any input or output arguments.

1 The .m’ suffix was chosen for compatibility with MATLAB.

Chapter 11: Functions and Script Files 115

It is possible to add or remove directories to or from the load path using the addpath and
rmpath. As an example, the following code adds ‘~/0Octave’ to the load path.

addpath("~/0ctave")

After this the directory ‘~/0ctave’ will be searched for functions.

addpath (diri, ...) [Built-in Function]
addpath (dirli, ..., option) [Built-in Function]
Add dirl, ... to the current function search path. If option is ‘"-begin"’ or 0 (the default),

prepend the directory name to the current path. If option is ‘"-end"’ or 1, append the
directory name to the current path. Directories added to the path must exist.

See also: path, rmpath, genpath, pathdef, savepath, pathsep.

genpath (dir) [Built-in Function]
Return a path constructed from dir and all its subdiretories.

rmpath (diri, ...) [Built-in Function]
Remove dirl, ... from the current function search path.

See also: path, addpath, genpath, pathdef, savepath, pathsep.

savepath (file) [Function File]
Save the current function search path to file. If file is omitted, ‘”/.octaverc’ is used. If
successful, savepath returns 0.

See also: path, addpath, rmpath, genpath, pathdef, pathsep.

path (...) [Built-in Function]
Modify or display Octave’s load path.

If nargin and nargout are zero, display the elements of Octave’s load path in an easy to read
format.

If nargin is zero and nargout is greater than zero, return the current load path.

If nargin is greater than zero, concatenate the arguments, separating them with pathsep().
Set the internal search path to the result and return it.

No checks are made for duplicate elements.

See also: addpath, rmpath, genpath, pathdef, savepath, pathsep.

val = pathdef () [Built-in Function]
Return the default list of directories in which to search for function files.

See also: path, addpath, rmpath, genpath, savepath, pathsep.

pathsep () [Built-in Function]
Return the system-dependent character used to separate directories in a path.

See also: filesep, dir, Is.

rehash () [Built-in Function]
Reinitialize Octave’s load path directory cache.

116 GNU Octave

file_in_loadpath (file) [Built-in Function]

file_in_loadpath (file, "all") [Built-in Function]
Return the absolute name of file if it can be found in the list of directories specified by path.
If no file is found, return an empty matrix.

If the first argument is a cell array of strings, search each directory of the loadpath for element
of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the list of
all files that have the same name in the path. If no files are found, return an empty cell array.

See also: file_in_path, path.
11.7.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary functions
are only visible to the other functions in the same function file. For example, a file ‘f.m’
containing

function £ ()
printf ("in f, calling g\n");
g O
endfunction
function g ()
printf ("in g, calling h\n");
h O
endfunction
function h O
printf ("in h\n")
endfunction
defines a main function £ and two subfunctions. The subfunctions g and h may only be called
from the main function f or from the other subfunctions, but not from outside the file ‘f.m’.

11.7.3 Overloading and Autoloading

The dispatch function can be used to alias one function name to another. It can be used to
alias all calls to a particular function name to another function, or the alias can be limited to
only a particular variable type. Consider the example
function y = spsin (x)
printf ("Calling spsin\n");
fflush(stdout);
y = spfun ("sin", x);
endfunction

dispatch ("sin", "spsin", "sparse matrix");

yO = sin(eye(3));

y1l = sin(speye(3));
Which aliases the spsin to sin, but only for real sparse matrices. Note that the builtin sin
already correctly treats sparse matrices and so this example is only illustrative.

dispatch (f, r, type) [Loadable Function]
Replace the function f with a dispatch so that function r is called when f is called with the
first argument of the named type. If the type is any then call r if no other type matches.
The original function f is accessible using builtin (£, ...).

If r is omitted, clear dispatch function associated with type.

If both r and type are omitted, list dispatch functions for f.

Chapter 11: Functions and Script Files 117

See also: builtin.

[...] builtin (f,...) [Loadable Function]
Call the base function f even if f is overloaded to some other function for the given type
signature.

See also: dispatch.

A single dynamically linked file might define several functions. However, as Octave searches
for functions based on the functions filename, Octave needs a manner in which to find each of the
functions in the dynamically linked file. On operating systems that support symbolic links, it is
possible to create a symbolic link to the original file for each of the functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is also possible, but is undesirable
as it multiples the amount of disk space used by Octave. Instead Octave supplies the autoload
function, that permits the user to define in which file a certain function will be found.

autoload (function, file) [Built-in Function]
Define function to autoload from file.

The second argument, file, should be an absolute file name or a file name in the same directory
as the function or script from which the autoload command was run. file should not depend
on the Octave load path.

Normally, calls to autoload appear in PKG_ADD script files that are evaluated when a
directory is added to the Octave’s load path. To avoid having to hardcode directory names
in file, if file is in the same directory as the PKG_ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above when bar.oct is not in the same
directory or uses like

autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior might be unpredictable.

With no arguments, return a structure containing the current autoload map.
See also: PKG_ADD.

11.7.4 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is typically
used for dynamically linked functions in Oct-files or mex-files that contain some initialization,
and it is desirable that calling clear does not remove this initialization.

As an example,
mlock ("my_function");

prevents my_function from being removed from memory, even if clear is called. It is possible
to determine if a function is locked into memory with the mislocked, and to unlock a function
with munlock, which the following illustrates.

mlock ("my_function");

mislocked ("my_function")

= ans =1

munlock ("my_function");

mislocked ("my_function")

= ans =0

A common use of mlock is to prevent persistent variables from being removed from memory,

as the following example shows.

118 GNU Octave

function count_calls()
persistent calls = O;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction
mlock ("count_calls");

count_calls ();
- ’count_calls’ has been called 1 times

clear count_calls
count_calls ();
- ’count_calls’ has been called 2 times

It is, however, often inconvenient to lock a function from the prompt, so it is also possible to lock
a function from within its body. This is simply done by calling mlock from within the function.

function count_calls ()
mlock ();
persistent calls = O;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

mlock might equally be used to prevent changes to a function from having effect in Octave,
though a similar effect can be had with the ignore_function_time_stamp function.

mlock (name) [Built-in Function]
Lock the named function into memory. If no function is named then lock in the current
function.

See also: munlock, mislocked, persistent.

munlock (fcn) [Built-in Function]
Unlock the named function. If no function is named then unlock the current function.

See also: mlock, mislocked, persistent.

mislocked (fcn) [Built-in Function]
Return true if the named function is locked. If no function is named then return true if the
current function is locked.

See also: mlock, munlock, persistent.

11.8 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and eval-
uated just as if you had typed each command at the Octave prompt, and provides a convenient
way to perform a sequence of commands that do not logically belong inside a function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should be
evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file are not
local variables, but are in the same scope as the other variables that are visible on the command
line.

Chapter 11: Functions and Script Files 119

Even though a script file may not begin with the function keyword, it is possible to define
more than one function in a single script file and load (but not execute) all of them at once. To
do this, the first token in the file (ignoring comments and other white space) must be something
other than function. If you have no other statements to evaluate, you can use a statement that
has no effect, like this:

Prevent Octave from thinking that this
is a function file:

1
Define function one:

function one ()

To have Octave read and compile these functions into an internal form, you need to make
sure that the file is in Octave’s load path (accessible through the path function), then simply
type the base name of the file that contains the commands. (Octave uses the same rules to
search for script files as it does to search for function files.)

If the first token in a file (ignoring comments) is function, Octave will compile the function
and try to execute it, printing a message warning about any non-whitespace characters that
appear after the function definition.

Note that Octave does not try to look up the definition of any identifier until it needs to
evaluate it. This means that Octave will compile the following statements if they appear in a
script file, or are typed at the command line,

not a function file:

1;

function foo ()
do_something ();

endfunction

function do_something ()
do_something_else ();

endfunction

even though the function do_something is not defined before it is referenced in the function foo.
This is not an error because Octave does not need to resolve all symbols that are referenced by
a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will always
print ‘bar = 3’ whether it is typed directly on the command line, read from a script file, or is
part of a function body, even if there is a function or script file called ‘bar.m’ in Octave’s path.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if definitions were resolved
as the function was being compiled. It would be virtually impossible to make Octave clever
enough to evaluate this code in a consistent fashion. The parser would have to be able to
perform the call to eval at compile time, and that would be impossible unless all the references
in the string to be evaluated could also be resolved, and requiring that would be too restrictive
(the string might come from user input, or depend on things that are not known until the
function is evaluated).

Although Octave normally executes commands from script files that have the name ‘file.m’,
you can use the function source to execute commands from any file.

120 GNU Octave

source (file) [Built-in Function]
Parse and execute the contents of file. This is equivalent to executing commands from a
script file, but without requiring the file to be named ‘file.m’.

11.9 Function Handles, Inline Functions, and Anonymous
Functions
It can be very convenient store a function in a variable so that it can be passed to a different

function. For example, a function that performs numerical minimisation needs access to the
function that should be minimised.

11.9.1 Function Handles

A function handle is a pointer to another function and is defined with the syntax
@function-name

For example
f = @sin;

Creates a function handle called f that refers to the function sin.

Function handles are used to call other functions indirectly, or to pass a function as an
argument to another function like quad or fsolve. For example

f = @sin;
quad (f, 0, pi)
= 2

You may use feval to call a function using function handle, or simply write the name of the
function handle followed by an argument list. If there are no arguments, you must use an empty
argument list ‘()’. For example

f = @sin;
feval (f, pi/4)
= 0.70711
f (pi/4)
= 0.70711

functions (fcn_handle) [Built-in Function]
Return a struct containing information about the function handle fen_handle.

func2str (fcn_handle) [Built-in Function]
Return a string containing the name of the function referenced by the function handle
fen_handle.

str2func (fcn_name) [Built-in Function]
Return a function handle constructed from the string fcn_name.

11.9.2 Anonymous Functions

Anonymous functions are defined using the syntax

Q@(argument-1list) expression
Any variables that are not found in the argument list are inherited from the enclosing scope.
Anonymous functions are useful for creating simple unnamed functions from expressions or for
wrapping calls to other functions to adapt them for use by functions like quad. For example,

f =0(x) x.72;

quad (f, 0, 10)

= 333.33

creates a simple unnamed function from the expression x.~2 and passes it to quad,

Chapter 11: Functions and Script Files 121

quad (@(x) sin (x), 0, pi)
= 2

wraps another function, and

a=1;

b = 2;

quad (@(x) betainc (x, a, b), 0, 0.4)
= 0.13867

adapts a function with several parameters to the form required by quad. In this example, the
values of a and b that are passed to betainc are inherited from the current environment.

11.9.3 Inline Functions

An inline function is created from a string containing the function body using the inline
function. The following code defines the function f(x) = z? + 2.

f = inline("x"2 + 2");

After this it is possible to evaluate f at any x by writing £ (x).

inline (str) [Built-in Function]
inline (str, argi, ...) [Built-in Function)]
inline (str, n) [Built-in Function]

Create an inline function from the character string str. If called with a single argument, the
arguments of the generated function are extracted from the function itself. The generated
function arguments will then be in alphabetical order. It should be noted that i, and j are
ignored as arguments due to the ambiguity between their use as a variable or their use as an
inbuilt constant. All arguments followed by a parenthesis are considered to be functions.

If the second and subsequent arguments are character strings, they are the names of the
arguments of the function.

If the second argument is an integer n, the arguments are "x", "P1", ..., "PN".

See also: argnames, formula, vectorize.

argnames (fun) [Built-in Function]
Return a cell array of character strings containing the names of the arguments of the inline
function fun.

See also: inline, formula, vectorize.

formula (fun) [Built-in Function]
Return a character string representing the inline function fun. Note that char (fun) is
equivalent to formula (fun).

See also: argnames, inline, vectorize.

vectorize (fun) [Built-in Function]
Create a vectorized version of the inline function fun by replacing all occurrences of *, /, etc.,
with .*, ./, etc.

122 GNU Octave

11.10 Commands

Commands are a special class of functions that only accept string input arguments. A command
can be called as an ordinary function, but it can also be called without the parentheses like the
following example shows

my_command hello world
which is the same as
my_command ("hello", "world")
The general form of a command call is
name argl arg2
which translates directly to
name ("argl", "arg2", ...)

A function can be used as a command if it accepts string input arguments. To do this,
the function must be marked as a command, which can be done with the mark_as_command
command like this

mark_as_command name
where name is the function to be marked as a command.

One difficulty of commands occurs when one of the string input arguments are stored in a
variable. Since Octave can’t tell the difference between a variable name, and an ordinary string,
it is not possible to pass a variable as input to a command. In such a situation a command must
be called as a function.

mark_as_command (name) [Built-in Function]
Enter name into the list of commands.

See also: unmark_command, iscommand.

unmark_command (name) [Built-in Function]
Remove name from the list of commands.

See also: mark_as_command, iscommand.

iscommand (name) [Built-in Function]
Return true if name is a command style function. If name is omitted, return a list of identifiers
which are marked as commands with mark_as_command.

See also: mark_as_command, unmark_command.

mark_as_rawcommand (name) [Built-in Function)]
Enter name into the list of raw input commands and to the list of command style functions.
Raw input commands are like normal command style functions, but they receive their input
unprocessed (ie. strings still contain the quotes and escapes they had when input). However,
comments and continuations are handled as usual, you cannot pass a token starting with a
comment character ("#’ or '%’) to your function, and the last token cannot be a continuation
token ("\" or "...7).

See also: unmark_rawcommand, israwcommand, iscommand, mark_as_command.

unmark_rawcommand (name) [Built-in Function]
Remove name from the list of raw input commands. Note that this does not remove name
from the list of command style functions.

See also: mark_as_rawcommand, israwcommand, iscommand, unmark_command.

Chapter 11: Functions and Script Files 123

israwcommand (name) [Built-in Function]
Return true if name is a raw input command function. If name is omitted, return a list of
identifiers which are marked as raw input commands with mark_as_rawcommand.

See also: mark_as_rawcommand, unmark_rawcommand.

11.11 Organization of Functions Distributed with Octave

Many of Octave’s standard functions are distributed as function files. They are loosely organized
by topic, in subdirectories of ‘octave-home/lib/octave/version/m’, to make it easier to find
them.

The following is a list of all the function file subdirectories, and the types of functions you
will find there.
‘audio’ Functions for playing and recording sounds.
‘control’ Functions for design and simulation of automatic control systems.

‘elfun’ Elementary functions.

)

‘finance’ Functions for computing interest payments, investment values, and rates of return.

‘general’ Miscellaneous matrix manipulations, like f1ipud, rot90, and triu, as well as other
basic functions, like ismatrix, nargchk, etc.

‘image’ Image processing tools. These functions require the X Window System.

‘io’ Input-ouput functions.

‘linear-algebra’
Functions for linear algebra.

‘miscellaneous’

Functions that don’t really belong anywhere else.
‘optimization’

Minimization of functions.

‘path’ Functions to manage the directory path Octave uses to find functions.
‘pkg’ Install external packages of functions in Octave.

‘plot’ Functions for displaying and printing two- and three-dimensional graphs.
‘polynomial’

Functions for manipulating polynomials.

4)

set Functions for creating and manipulating sets of unique values.
‘signal’ Functions for signal processing applications.

‘sparse’ Functions for handling sparse matrices.

‘specfun’ Special functions.

‘special-matrix’
Functions that create special matrix forms.

‘startup’ Octave’s system-wide startup file.

‘statistics’
Statistical functions.

‘strings’ Miscellaneous string-handling functions.
‘testfun’ Perform unit tests on other functions.

‘time’ Functions related to time keeping.

124 GNU Octave

Chapter 12: Errors and Warnings 125

12 Errors and Warnings

Octave includes several functions for printing error and warning messages. When you write
functions that need to take special action when they encounter abnormal conditions, you should
print the error messages using the functions described in this chapter.

Since many of Octave’s functions use these functions, it is also useful to understand them,
so that errors and warnings can be handled.

12.1 Handling Errors

An error is something that occurs when a program is in a state where it doesn’t make sense
to continue. An example is when a function is called with too few input arguments. In this
situation the function should abort with an error message informing the user of the lacking input
arguments.

Since an error can occur during the evaluation of a program, it is very convenient to be able
to detect that an error occurred, so that the error can be fixed. This is possible with the try
statement described in Section 10.9 [The try Statement], page 105.

12.1.1 Raising Errors

The most common use of errors is for checking input arguments to functions. The following
example calls the error function if the function f is called without any input arguments.

function f (argl)
if (nargin == 0)
error("not enough input arguments");
endif
endfunction

When the error function is called, it prints the given message and returns to the Octave
prompt. This means that no code following a call to error will be executed.

error (template, ...) [Built-in Function]

error (id, template, ...) [Built-in Function]
Format the optional arguments under the control of the template string template using
the same rules as the printf family of functions (see Section 14.2.4 [Formatted Output],
page 149) and print the resulting message on the stderr stream. The message is prefixed by
the character string ‘error: ’

Calling error also sets Octave’s internal error state such that control will return to the top
level without evaluating any more commands. This is useful for aborting from functions or
scripts.

If the error message does not end with a new line character, Octave will print a traceback of all
the function calls leading to the error. For example, given the following function definitions:

function £ () g (); end
function g () h (); end
function h () nargin == 1 || error ("nargin != 1"); end

calling the function £ will result in a list of messages that can help you to quickly locate the
exact location of the error:

£ 0O

error: nargin != 1

error: evaluating index expression near line 1, column 30
error: evaluating binary operator ‘||’ near line 1, column 27

error: called from ‘h’
error: called from ‘g’
error: called from ‘f’

126 GNU Octave

If the error message ends in a new line character, Octave will print the message but will not
display any traceback messages as it returns control to the top level. For example, modifying
the error message in the previous example to end in a new line causes Octave to only print
a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end
£ 0
error: nargin !=1

Since it is common to use errors when there is something wrong with the input to a function,
Octave supports functions to simplify such code. When the print_usage function is called,
it reads the help text of the function calling print_usage, and presents a useful error. If the
help text is written in Texinfo it is possible to present an error message that only contains the
function prototypes as described by the @deftypefn parts of the help text. When the help text
isn’t written in Texinfo, the error message contains the entire help message.

Consider the following function.

—-x- texinfo —*-
Q@deftypefn {Function File} f (@var{argl})
Function help text goes here...
Qend deftypefn
function f (argl)

if (nargin == 0)

print_usage O);

endif

endfunction

When it is called with no input arguments it produces the following error.

£ 0
- Invalid call to f. Correct usage is:
_{
4 -- Function File: f (ARG1)
_|
_|
_|
-1 error: evaluating if command near line 6, column 3
- error: called from ‘f’ in file ‘/home/jwe/octave/f.m’
print_usage () [Loadable Function)]

Print the usage message for the currently executing function. The print_usage function is
only intended to work inside a user-defined function.

See also: help.

usage (msg) [Built-in Function]
Print the message msg, prefixed by the string ‘usage: ’, and set Octave’s internal error state
such that control will return to the top level without evaluating any more commands. This
is useful for aborting from functions.

After usage is evaluated, Octave will print a traceback of all the function calls leading to the
usage message.

You should use this function for reporting problems errors that result from an improper call
to a function, such as calling a function with an incorrect number of arguments, or with
arguments of the wrong type. For example, most functions distributed with Octave begin
with code like this

Chapter 12: Errors and Warnings 127

if (nargin != 2)
usage ("foo (a, B)");
endif

to check for the proper number of arguments.

beep () [Function File]
Produce a beep from the speaker (or visual bell).

See also: puts, fputs, printf, fprintf.

val = beep_on_error () [Built-in Function]

old_val = beep_on_error (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to ring the terminal
bell before printing an error message.

12.1.2 Catching Errors

When an error occurs, it can be detected and handled using the try statement as described in
Section 10.9 [The try Statement], page 105. As an example, the following piece of code counts
the number of errors that occurs during a for loop.

number_of_errors = 0;
for n = 1:100
try
catch
number_of_errors++;

end_try_catch
endfor

The above example treats all errors the same. In many situations it can however be necessary
to discriminate between errors, and take different actions depending on the error. The lasterror
function returns a structure containing information about the last error that occurred. As an
example, the code above could be changed to count the number of errors related to the ¥’
operator.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;

if (strfind (msg, "operator *"))
number_of_errors++;

endif
end_try_catch
endfor
err = lasterror (err) [Built-in Function]
lasterror (’reset’) [Built-in Function]

Returns or sets the last error message. Called without any arguments returns a structure
containing the last error message, as well as other information related to this error. The
elements of this structure are:

‘message’ The text of the last error message

"identifier’ The message identifier of this error message

128 GNU Octave

"stack’ A structure containing information on where the message occurred. This might
be an empty structure if this in the case where this information can not be
obtained. The fields of this structure are:

file’ The name of the file where the error occurred
‘name’ The name of function in which the error occurred
’line’ The line number at which the error occurred

‘column’ An optional field with the column number at which the error occurred

The err structure may also be passed to lasterror to set the information about the last
error. The only constraint on err in that case is that it is a scalar structure. Any fields of
err that match the above are set to the value passed in err, while other fields are set to their
default values.

If lasterror is called with the argument 'reset’, all values take their default values.

[msg, msgid] = lasterr (msg, msgid) [Built-in Function]
Without any arguments, return the last error message. With one argument, set the last error
message to msg. With two arguments, also set the last message identifier.

When an error has been handled it is possible to raise it again. This can be useful when
an error needs to be detected, but the program should still abort. This is possible using the
rethrow function. The previous example can now be changed to count the number of errors
related to the ‘*’ operator, but still abort of another kind of error occurs.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;
if (strfind (msg, "operator *"))
number_of_errors++;
else
rethrow (lasterror);
endif
end_try_catch
endfor

rethrow (err) [Built-in Function]
Reissues a previous error as defined by err. err is a structure that must contain at least the
‘message’ and ’identifier’ fields. err can also contain a field ’stack’ that gives information on
the assumed location of the error. Typically err is returned from lasterror.

See also: lasterror, lasterr, error.

err = errno () [Built-in Function]
err = errno (val) [Built-in Function]
err = errno (name) [Built-in Function]

Return the current value of the system-dependent variable errno, set its value to val and
return the previous value, or return the named error code given name as a character string,
or -1 if name is not found.

errno_list () [Built-in Function]
Return a structure containing the system-dependent errno values.

Chapter 12: Errors and Warnings 129

12.2 Handling Warnings

Like an error, a warning is issued when something unexpected happens. Unlike an error, a
warning doesn’t abort the currently running program. A simple example of a warning is when
a number is divided by zero. In this case Octave will issue a warning and assign the value Inf
to the result.

a=1/0
- warning: division by zero
= a = Inf

12.2.1 Issuing Warnings

It is possible to issue warnings from any code using the warning function. In its most simple
form, the warning function takes a string describing the warning as its input argument. As
an example, the following code controls if the variable ‘a’ is non-negative, and if not issues a
warning and sets ‘a’ to zero.

a = -1;
if (a < 0)
warning ("’a’ must be non-negative. Setting ’a’ to zero.");
a = 0;
endif
- ’a’ must be non-negative. Setting ’a’ to zero.

Since warnings aren’t fatal to a running program, it is not possible to catch a warning using
the try statement or something similar. It is however possible to access the last warning as a
string using the lastwarn function.

It is also possible to assign an identification string a a warning. If a warning has such an
ID the user can enable and disable this warning as will be described in the next section. To
assign an ID to a warning, simply call warning with two string arguments, where the first is the
identification string, and the second is the actual warning.

warning (template, ...) [Built-in Function]

warning (id, template, ...) [Built-in Function]
Format the optional arguments under the control of the template string template using
the same rules as the printf family of functions (see Section 14.2.4 [Formatted Output],
page 149) and print the resulting message on the stderr stream. The message is prefixed by
the character string ‘warning: ’. You should use this function when you want to notify the
user of an unusual condition, but only when it makes sense for your program to go on.

The optional message identifier allows users to enable or disable warnings tagged by id. The
special identifier ‘"all"’ may be used to set the state of all warnings.
warning ("on", id) [Built-in Function]
warning ("off", id) [Built-in Function]
warning ("error", id) [Built-in Function]
warning ("query", id) [Built-in Function]
Set or query the state of a particular warning using the identifier id. If the identifier is
omitted, a value of ‘"all"’ is assumed. If you set the state of a warning to ‘"error"’, the
warning named by id is handled as if it were an error instead.

See also: warning_ids.

[msg, msgid] = lastwarn (msg, msgid) [Built-in Function]
Without any arguments, return the last warning message. With one argument, set the last
warning message to msg. With two arguments, also set the last message identifier.

130 GNU Octave

12.2.2 Enabling and Disabling Warnings

The warning function also allows you to control which warnings are actually printed to the
screen. If the warning function is called with a string argument that is either "on" or "off" all
warnings will be enabled or disabled.
It is also possible to enable and disable individual warnings through their string identifica-
tions. The following code will issue a warning
warning ("non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");
while the following won’t issue a warning
warning ("off", "non-negative-variable");
warning ("non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");
The functions distributed with Octave can issue one of the following warnings.
Octave:array-to-scalar
If the Octave:array-to-scalar warning is enabled, Octave will warn when an
implicit conversion from an array to a scalar value is attempted. By default, the
Octave:array-to-scalar warning is disabled.

Octave:array-to-vector
If the Octave:array-to-vector warning is enabled, Octave will warn when an
implicit conversion from an array to a vector value is attempted. By default, the
Octave:array-to-vector warning is disabled.

Octave:assign-as—-truth-value
If the Octave:assign-as-truth-value warning is enabled, a warning is issued for
statements like

if (s = t)

since such statements are not common, and it is likely that the intent was to write
if (s == t)

instead.

There are times when it is useful to write code that contains assignments within the
condition of a while or if statement. For example, statements like

while (c = getc())

are common in C programming.

It is possible to avoid all warnings about such statements by disabling the
Octave:assign-as-truth-value warning, but that may also let real errors like

if (x = 1) # intended to test (x == 1)!

slip by.
In such cases, it is possible suppress errors for specific statements by writing them
with an extra set of parentheses. For example, writing the previous example as

while ((c = getc()))

will prevent the warning from being printed for this statement, while allowing Octave
to warn about other assignments used in conditional contexts.

By default, the Octave:assign-as-truth-value warning is enabled.

Chapter 12: Errors and Warnings 131

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

associativity-change
If the Octave:associativity-change warning is enabled, Octave will warn about
possible changes in the meaning of some code due to changes in associativity for
some operators. Associativity changes have typically been made for MATLAB com-
patibility. By default, the Octave:associativity-change warning is enabled.

divide-by-zero
If the Octave:divide-by-zero warning is enabled, a warning is issued when Octave
encounters a division by zero. By default, the Octave:divide-by-zero warning is
enabled.

empty-list-elements
If the Octave:empty-list-elements warning is enabled, a warning is issued when
an empty matrix is found in a matrix list. For example,

a=1[1, 00, 3, [I, 5]
By default, the Octave:empty-list-elements warning is enabled.

fortran-indexing
If the Octave:fortran-indexing warning is enabled, a warning is printed for ex-
pressions which select elements of a two-dimensional matrix using a single index.
By default, the Octave:fortran-indexing warning is disabled.

function-name-clash
If the Octave:function-name-clash warning is enabled, a warning is issued when
Octave finds that the name of a function defined in a function file differs from the
name of the file. (If the names disagree, the name declared inside the file is ignored.)
By default, the Octave:function-name-clash warning is enabled.

future-time-stamp
If the Octave:future-time-stamp warning is enabled, Octave will print a warning
if it finds a function file with a time stamp that is in the future. By default, the
Octave:future-time-stamp warning is enabled.

imag-to-real
If the Octave:imag-to-real warning is enabled, a warning is printed for implicit
conversions of complex numbers to real numbers. By default, the Octave:imag-to-
real warning is disabled.

matlab-incompatible
Print warnings for Octave language features that may cause compatibility problems
with MATLAB.

missing-semicolon
If the Octave:missing-semicolon warning is enabled, Octave will warn when
statements in function definitions don’t end in semicolons. By default the
Octave:missing-semicolon warning is disabled.

neg-dim-as-zero
If the Octave:neg-dim-as-zero warning is enabled, print a warning for expressions
like
eye (-1)
By default, the Octave:neg-dim-as-zero warning is disabled.

num-to-str
If the Octave :num-to-str warning is enable, a warning is printed for implicit con-
versions of numbers to their ASCII character equivalents when strings are con-
structed using a mixture of strings and numbers in matrix notation. For example,

132 GNU Octave

[£, 111, 111]
= "foo"

elicits a warning if the Octave:num-to-str warning is enabled. By default, the
Octave:num-to-str warning is enabled.

Octave:precedence-change
If the Octave:precedence-change warning is enabled, Octave will warn about pos-
sible changes in the meaning of some code due to changes in precedence for some
operators. Precedence changes have typically been made for MATLAB compatibility.
By default, the Octave:precedence-change warning is enabled.

Octave:reload-forces-clear
If several functions have been loaded from the same file, Octave must clear all the
functions before any one of them can be reloaded. If the Octave:reload-forces-
clear warning is enabled, Octave will warn you when this happens, and print a list
of the additional functions that it is forced to clear. By default, the Octave:reload-
forces-clear warning is enabled.

Octave:resize-on-range-error
If the Octave:resize-on-range-error warning is enabled, print a warning when a
matrix is resized by an indexed assignment with indices outside the current bounds.
By default, the Octave:resize-on-range-error warning is disabled.

Octave:separator-insert
Print warning if commas or semicolons might be inserted automatically in literal
matrices.

Octave:single-quote-string
Print warning if a signle quote character is used to introduce a string constant.

Octave:str-to-num
If the Octave:str-to-num warning is enabled, a warning is printed for implicit
conversions of strings to their numeric ASCII equivalents. For example,

"abc" + 0
= 97 98 99

elicits a warning if the Octave:str-to-num warning is enabled. By default, the
Octave:str-to-num warning is disabled.

Octave:string-concat
If the Octave:string-concat warning is enabled, print a warning when concatenat-
ing a mixture of double and single quoted strings. By default, the Octave:string-
concat warning is disabled.

Octave:undefined-return-values
If the Octave:undefined-return-values warning is disabled, print a warning if
a function does not define all the values in the return list which are expected. By
default, the Octave:undefined-return-values warning is enabled.

Octave:variable-switch-label
If the Octave:variable-switch-label warning is enabled, Octave will print a
warning if a switch label is not a constant or constant expression. By default,
the Octave:variable-switch-label warning is disabled.

Chapter 13: Debugging 133

13 Debugging

Octave includes a built-in debugger to aid in the development of scripts. This can be used to
interrupt the execution of an Octave script at a certain point, or when certain conditions are
met. Once execution has stopped, and debug mode is entered, the symbol table at the point
where execution has stopped can be examined and modified to check for errors.

The normal commandline editing and history functions are available in debug mode. How-
ever, one limitation on the debug mode is that commands entered at the debug prompt are
evaluated as strings, rather than being handled by the Octave parser. This means that all
commands in debug mode must be contained on a single line. That is, it is alright to write

debug> for i = 1:n, foo(i); endfor

in debug mode. However, writing the above in three lines will not be correctly evaluated. To
leave the debug mode, you should simply type either quit, exit, return or dbcont.

13.1 Entering Debug Mode

There are two basic means of interrupting the execution of an Octave script. These are break-
points Section 13.2 [Breakpoints], page 133, discussed in the next section and interruption based
on some condition.

Octave supports three means to stop execution based on the values set in the functions
debug_on_interrupt, debug_on_warning and debug_on_error.

val = debug_on_interrupt () [Built-in Function]

old_val = debug_on_interrupt (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter debugging
mode when it receives an interrupt signal (typically generated with C-c). If a second interrupt
signal is received before reaching the debugging mode, a normal interrupt will occur.

val = debug_on_warning () [Built-in Function]

old_val = debug_on_warning (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter the debugger
when a warning is encountered.

val = debug_on_error () [Built-in Function]

old_val = debug_on_error (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter the debugger
when an error is encountered. This will also inhibit printing of the normal traceback message
(you will only see the top-level error message).

13.2 Breakpoints

Breakpoints can be set in any Octave function, using the dbstop function.

rline = dbstop (func, line, ...) [Loadable Function)]
Set a breakpoint in a function

func String representing the function name. When already in debug mode this should
be left out and only the line should be given.

line Line you would like the breakpoint to be set on. Multiple lines might be given
as separate arguments or as a vector.

The rline returned is the real line that the breakpoint was set at.

See also: dbclear, dbstatus, dbnext.

134 GNU Octave

Note that breakpoints can not be set in built-in functions (eg. sin, etc) or dynamically loaded
function (ie. oct-files). To set a breakpoint immediately on entering a function, the breakpoint
should be set to line 1. The leading comment block will be ignored and the breakpoint will be
set to the first executable statement in the function. For example

dbstop ("asind", 1)
= 27

Note that the return value of 27 means that the breakpoint was effectively set to line 27. The
status of breakpoints in a function can be queried with the dbstatus function.

1st = dbstatus (func) [Loadable Function]
Return a vector containing the lines on which a function has breakpoints set.

func String representing the function name. When already in debug mode this should
be left out.

See also: dbclear, dbwhere.

Taking the above as an example, dbstatus ("asind") should return 27. The breakpoints can
then be cleared with the dbclear function

dbclear (func, line, ...) [Loadable Function]
Delete a breakpoint in a function

func String representing the function name. When already in debug mode this should
be left out and only the line should be given.

line Line where you would like to remove the breakpoint. Multiple lines might be
given as separate arguments or as a vector.

No checking is done to make sure that the line you requested is really a breakpoint. If you
get the wrong line nothing will happen.

See also: dbstop, dbstatus, dbwhere.

To clear all of the breakpoints in a function the recommended means, following the above
example, is then

dbclear ("asind", dbstatus ("asind"));

Another simple means of setting a breakpoint in an Octave script is the use of the keyboard
function.

keyboard (prompt) [Built-in Function]
This function is normally used for simple debugging. When the keyboard function is exe-
cuted, Octave prints a prompt and waits for user input. The input strings are then evaluated
and the results are printed. This makes it possible to examine the values of variables within
a function, and to assign new values to variables. No value is returned from the keyboard
function, and it continues to prompt for input until the user types ‘quit’, or ‘exit’.

If keyboard is invoked without any arguments, a default prompt of ‘debug> ’ is used.

The keyboard function is typically placed in a script at the point where the user desires that
the execution is stopped. It automatically sets the running script into the debug mode.

Chapter 13: Debugging 135

13.3 Debug Mode

There are two additional support functions that allow the user to interrogate where in the exe-
cution of a script Octave entered the debug mode and to print the code in the script surrounding
the point where Octave entered debug mode.

dbwhere () [Loadable Function]
Show where we are in the code

See also: dbclear, dbstatus, dbstop.

dbtype () [Loadable Function]
List script file with line numbers.

See also: dbclear, dbstatus, dbstop.

Debug mode equally allows single line stepping through a function using the commands
dbstep and dbnext. These differ slightly in the way they treat the next executable line if the
next line itself is a function defined in an m-file. The dbnext command will execute the next
line, while staying in the existing function being debugged. The dbstep command will step in
to the new function.

136 GNU Octave

Chapter 14: Input and Output 137

14 Input and Output

Octave supports several ways of reading and writing data to or from the prompt or a file. The
most simple functions for data Input and Output (I/O) are easy to use, but only provides a
limited control of how data is processed. For more control, a set of functions modelled after the
C standard library are also provided by Octave.

14.1 Basic Input and Output

14.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated, the
simplest of all I/O functions is a simple expression. For example, the following expression will
display the value of ‘pi’
pi
-4 pi = 3.1416

This works well as long as it is acceptable to have the name of the variable (or ‘ans’) printed
along with the value. To print the value of a variable without printing its name, use the function
disp.

The format command offers some control over the way Octave prints values with disp and
through the normal echoing mechanism.

ans [Automatic Variable]
The most recently computed result that was not explicitly assigned to a variable. For example,
after the expression

372 + 472

is evaluated, the value returned by ans is 25.

disp (x) [Built-in Function]
Display the value of x. For example,

disp ("The value of pi is:"), disp (pi)

- the value of pi is:
- 3.1416

Note that the output from disp always ends with a newline.

If an output value is requested, disp prints nothing and returns the formatted output in a
string.

See also: fdisp.

format options [Command]|
Control the format of the output produced by disp and Octave’s normal echoing mechanism.
Valid options are listed in the following table.

short Octave will try to print numbers with at least 5 significant figures within a field
that is a maximum of 10 characters wide (not counting additional spacing that
is added between columns of a matrix).

If Octave is unable to format a matrix so that columns line up on the decimal
point and all the numbers fit within the maximum field width, it switches to an
‘e’ format.

138

long

long e
short e

long E
short E

long g
short g

long G
short G

free
none

bank

+
+ chars
plus

plus chars

GNU Octave

Octave will try to print numbers with at least 15 significant figures within a field
that is a maximum of 20 characters wide (not counting additional spacing that
is added between columns of a matrix).

As will the ‘short’ format, Octave will switch to an ‘e’ format if it is unable to
format a matrix so that columns line up on the decimal point and all the numbers
fit within the maximum field width.

The same as ‘format long’ or ‘format short’ but always display output with an
‘e’ format. For example, with the ‘short e’ format, pi is displayed as 3.14e+00.

The same as ‘format long e’ or ‘format short e’ but always display output with
an uppercase ‘E’ format. For example, with the ‘long E’ format, pi is displayed
as 3.14159265358979E+00

Choose between normal ‘long’ (or ‘short’) and ‘long e’ (or ‘short e’) formats
based on the magnitude of the number. For example, with the ‘short g’ format,
pi .~ [2; 4; 8; 16; 32] is displayed as

ans =

9.8696
97.409
9488.5
9.0032e+07
8.1058e+15

The same as ‘format long g’ or ‘format short g’ but use an uppercase ‘E’ for-
mat. For example, with the ‘short G’ format, pi .~ [2; 4; 8; 16; 32] is dis-
played as

ans =

9.8696
97.409
9488.5
9.0032E+07
8.1058E+15

Print output in free format, without trying to line up columns of matrices on
the decimal point. This also causes complex numbers to be formatted like this
*(0.604194, 0.607088)’ instead of like this ‘0.60419 + 0.60709i’.

Print in a fixed format with two places to the right of the decimal point.

Print a ‘+’ symbol for nonzero matrix elements and a space for zero matrix
elements. This format can be very useful for examining the structure of a large
matrix.

Chapter 14: Input and Output 139

The optional argument chars specifies a list of 3 characters to use for printing
values greater than zero, less than zero and equal to zero. For example, with the
“+ "+-_" format, [1, 0, -1; -1, 0, 1] is displayed as

native-hex
Print the hexadecimal representation numbers as they are stored in memory. For
example, on a workstation which stores 8 byte real values in IEEE format with
the least significant byte first, the value of pi when printed in hex format is
400921fb544424d18. This format only works for numeric values.

hex The same as native-hex, but always print the most significant byte first.

native-bit
Print the bit representation of numbers as stored in memory. For example, the
value of pi is
01000000000010010010000111111011
01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when printed in bit
format on a workstation which stores 8 byte real values in IEEE format with the
least significant byte first. This format only works for numeric types.

bit The same as native-bit, but always print the most significant bits first.
compact Remove extra blank space around column number labels.
loose Insert blank lines above and below column number labels (this is the default).

rat Print a rational approximation. That is the values are approximated by one small
integer divided by another.

By default, Octave will try to print numbers with at least 5 significant figures within a field
that is a maximum of 10 characters wide.

If Octave is unable to format a matrix so that columns line up on the decimal point and all
the numbers fit within the maximum field width, it switches to an ‘e’ format.

If format is invoked without any options, the default format state is restored.

val = print_answer_id_name () [Built-in Function]

old_val = print_answer_id_name (new_val) [Built-in Function]
Query or set the internal variable that controls whether variable names are printed along
with results produced by evaluating an expression.

14.1.1.1 Paging Screen Output

When running interactively, Octave normally sends any output intended for your terminal that
is more than one screen long to a paging program, such as less or more. This avoids the problem
of having a large volume of output stream by before you can read it. With less (and some
versions of more) you can also scan forward and backward, and search for specific items.

Normally, no output is displayed by the pager until just before Octave is ready to print
the top level prompt, or read from the standard input (for example, by using the fscanf or
scanf functions). This means that there may be some delay before any output appears on your
screen if you have asked Octave to perform a significant amount of work with a single command

140 GNU Octave

statement. The function £flush may be used to force output to be sent to the pager (or any
other stream) immediately.

You can select the program to run as the pager using the PAGER function, and you can turn
paging off by using the function more.

more [Command|
more on [Command|
more off [Command]

Turn output pagination on or off. Without an argument, more toggles the current state.

val = PAGER () [Built-in Function]

old_val = PAGER (new_val) [Built-in Function]
Query or set the internal variable that specifies the program to use to display terminal output
on your system. The default value is normally "less", "more", or "pg", depending on what
programs are installed on your system. See Appendix E [Installation], page 507.

See also: more, page_screen_output, page_output_immediately, PAGER_FLAGS.

val = PAGER_FLAGS () [Built-in Function]
old_val = PAGER_FLAGS (new_val) [Built-in Function]
Query or set the internal variable that specifies the options to pass to the pager.

See also: PAGER.

val = page_screen_output () [Built-in Function]

old_val = page_screen_output (new_val) [Built-in Function]
Query or set the internal variable that controls whether output intended for the terminal
window that is longer than one page is sent through a pager. This allows you to view one
screenful at a time. Some pagers (such as less—see Appendix E [Installation], page 507) are
also capable of moving backward on the output.

val = page_output_immediately () [Built-in Function]

val = page_output_immediately (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave sends output to the pager as
soon as it is available. Otherwise, Octave buffers its output and waits until just before the
prompt is printed to flush it to the pager.

fflush (fid) [Built-in Function]
Flush output to fid. This is useful for ensuring that all pending output makes it to the screen
before some other event occurs. For example, it is always a good idea to flush the standard
output stream before calling input.

fflush returns 0 on success and an OS dependent error value (—1 on unix) on error.

See also: fopen, fclose.

14.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and menu
functions are normally used for managing an interactive dialog with a user, and the keyboard
function is normally used for doing simple debugging.

input (prompt) [Built-in Function]
input (prompt, "s") [Built-in Function]
Print a prompt and wait for user input. For example,

Chapter 14: Input and Output 141

input ("Pick a number, any number! ")
prints the prompt

Pick a number, any number!
and waits for the user to enter a value. The string entered by the user is evaluated as an
expression, so it may be a literal constant, a variable name, or any other valid expression.
Currently, input only returns one value, regardless of the number of values produced by the
evaluation of the expression.

If you are only interested in getting a literal string value, you can call input with the character
string "s" as the second argument. This tells Octave to return the string entered by the user
directly, without evaluating it first.

Because there may be output waiting to be displayed by the pager, it is a good idea to
always call £flush (stdout) before calling input. This will ensure that all pending output
is written to the screen before your prompt. See Chapter 14 [Input and Output|, page 137.

menu (title, optl, ...) [Function File]
Print a title string followed by a series of options. Each option will be printed along with a
number. The return value is the number of the option selected by the user. This function
is useful for interactive programs. There is no limit to the number of options that may be
passed in, but it may be confusing to present more than will fit easily on one screen.

See also: disp, printf, input.

For input, the normal command line history and editing functions are available at the
prompt.

Octave also has a function that makes it possible to get a single character from the keyboard
without requiring the user to type a carriage return.

kbhit () [Built-in Function]
Read a single keystroke from the keyboard. If called with one argument, don’t wait for a
keypress. For example,
x = kbhit ();
will set x to the next character typed at the keyboard as soon as it is typed.
x = kbhit (1);

identical to the above example, but don’t wait for a keypress, returning the empty string if
no key is available.

14.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk files in various
formats. The default format of files written by the save command can be controlled using the
functions default_save_options and save_precision.

As an example the following code creates a 3-by-3 matrix and saves it to the file ‘myfile.mat’.
A=1[1:3; 4:6; 7:9 1;
save myfile.mat A

Once one or more variables have been saved to a file, they can be read into memory using
the load command.

load myfile.mat
A

4 A=
4

142 GNU Octave

save options file vl v2 ... [Command]
Save the named variables v1, v2, ..., in the file file. The special filename ‘=’ can be used
to write the output to your terminal. If no variable names are listed, Octave saves all
the variables in the current scope. Valid options for the save command are listed in the
following table. Options that modify the output format override the format specified by
default_save_options.

If save is invoked using the functional form

save ("-optionl", ..., "file", "v1", ...)
then the options, file, and variable name arguments (v1, ...) must be specified as character
strings.
-ascii Save a single matrix in a text file.

-binary Save the data in Octave’s binary data format.

-float-binary
Save the data in Octave’s binary data format but only using single precision.
You should use this format only if you know that all the values to be saved can
be represented in single precision.

=V7
-v7
-7
-mat7-binary
Save the data in MATLAB’s v7 binary data format.

-Vé
-v6
-6
-mat
-mat-binary
Save the data in MATLAB’s v6 binary data format.

-V4
-véd
-4
-mat4-binary
Save the data in the binary format written by MATLAB version 4.

-hdf5 Save the data in HDF5 format. (HDF5 is a free, portable binary format developed
by the National Center for Supercomputing Applications at the University of
linois.)

-float-hdfb

Save the data in HDF5 format but only using single precision. You should use
this format only if you know that all the values to be saved can be represented
in single precision.

-zip

-z Use the gzip algorithm to compress the file. This works equally on files that are
compressed with gzip outside of octave, and gzip can equally be used to convert
the files for backward compatibility.

Chapter 14: Input and Output 143

The list of variables to save may include wildcard patterns containing the following special
characters:

? Match any single character.
* Match zero or more characters.

[1ist] Match the list of characters specified by list. If the first character is ! or =, match
all characters except those specified by list. For example, the pattern ‘[a-zA-Z]’
will match all lower and upper case alphabetic characters.

-text Save the data in Octave’s text data format.

Except when using the MATLAB binary data file format, saving global variables also saves
the global status of the variable, so that if it is restored at a later time using ‘load’, it will
be restored as a global variable.

The command
save —-binary data a b*

saves the variable ‘a’ and all variables beginning with ‘b’ to the file ‘data’ in Octave’s binary
format.

load options file v1 v2 ... [Command]|
Load the named variables v1, v2, ..., from the file file. As with save, you may specify a list
of variables and load will only extract those variables with names that match. For example,
to restore the variables saved in the file ‘data’, use the command

load data
If load is invoked using the functional form
load ("-optioni", ..., "file", "vi", ...)

then the options, file, and variable name arguments (vI, . ..) must be specified as character
strings.

If a variable that is not marked as global is loaded from a file when a global symbol with
the same name already exists, it is loaded in the global symbol table. Also, if a variable is
marked as global in a file and a local symbol exists, the local symbol is moved to the global
symbol table and given the value from the file. Since it seems that both of these cases are
likely to be the result of some sort of error, they will generate warnings.

If invoked with a single output argument, Octave returns data instead of inserting variables in
the symbol table. If the data file contains only numbers (TAB- or space-delimited columns), a
matrix of values is returned. Otherwise, load returns a structure with members corresponding
to the names of the variables in the file.

The load command can read data stored in Octave’s text and binary formats, and MATLAB’s
binary format. It will automatically detect the type of file and do conversion from different
floating point formats (currently only IEEE big and little endian, though other formats may
added in the future).

Valid options for load are listed in the following table.

-force The ‘-force’ option is accepted but ignored for backward compatibility. Octave
now overwrites variables currently in memory with the same name as those found
in the file.

-ascii Force Octave to assume the file contains columns of numbers in text format

without any header or other information. Data in the file will be loaded as a
single numeric matrix with the name of the variable derived from the name of
the file.

144 GNU Octave

-binary Force Octave to assume the file is in Octave’s binary format.

-mat
-mat-binary

-v7 Force Octave to assume the file is in MATLAB’s version 6 or 7 binary format.

-mat4-binary
Force Octave to assume the file is in the binary format written by MATLAB
version 4.

-hdf5b Force Octave to assume the file is in HDF5 format. (HDF5 is a free, portable
binary format developed by the National Center for Supercomputing Applications
at the University of Illinois.) Note that Octave can read HDF5 files not created
by itself, but may skip some datasets in formats that it cannot support.

-import The ‘~import’ is accepted but ignored for backward compatibility. Octave can
now support multi-dimensional HDF data and automatically modifies variable
names if they are invalid Octave identifiers.

-text Force Octave to assume the file is in Octave’s text format.

There are three functions that modify the behavior of save.

val = default_save_options () [Built-in Function]
old_val = default_save_options (new_val) [Built-in Function]
Query or set the internal variable that specifies the default options for the save command, and
defines the default format. Typical values include "-ascii", "-ascii -zip". The default

value is —ascii.

See also: save.

val = save_precision () [Built-in Function]

old_val = save_precision (new_val) [Built-in Function]
Query or set the internal variable that specifies the number of digits to keep when saving
data in text format.

val = save_header_format_string () [Built-in Function]
old_val = save_header_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string used for the comment line
written at the beginning of text-format data files saved by Octave. The format string is passed
to strftime and should begin with the character ‘#” and contain no newline characters. If the
value of save_header_format_string is the empty string, the header comment is omitted
from text-format data files. The default value is
"# Created by Octave VERSION, %a %b %d %H:%M:%S AY %#Z <USER@HOST>"

See also: stritime.

native_float_format () [Built-in Function]
Return the native floating point format as a string

Chapter 14: Input and Output 145

It is possible to write data to a file in a way much similar to the disp function for writing
data to the screen. The fdisp works just like disp except its first argument is a file pointer as
created by fopen. As an example, the following code writes to data ‘myfile.txt’.

fid = fopen ("myfile.txt", "w");
fdisp (fid, "3/8 is ");

fdisp (fid, 3/8);

fclose (fid);

See Section 14.2.1 [Opening and Closing Files], page 147, for details on how to use fopen and
fclose.

fdisp (fid, x) [Built-in Function]
Display the value of x on the stream fid. For example,

fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

- the value of pi is:
- 3.1416

Note that the output from fdisp always ends with a newline.

See also: disp.

14.1.3.1 Saving Data on Unexpected Exits

If Octave for some reason exits unexpected it will by default save the variables available in the
workspace to a file in the current directory. By default this file is named ‘octave-core’ and
can be loaded into memory with the load command. While the default behaviour most often is
reasonable it can be changed through the following functions.

val = crash_dumps_octave_core () [Built-in Function]

old_val = crash_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it crashes or receives a hangup, terminate or similar
signal.

See also: octave_core_file_limit, octave_core_file_name, octave_core_file_options.

val = sighup_dumps_octave_core () [Built-in Function]

old_val = sighup_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a hangup signal.

val = sigterm_dumps_octave_core () [Built-in Function]

old_val = sigterm_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a terminate signal.

val = octave_core_file_options () [Built-in Function]

old_val = octave_core_file_options (new_val) [Built-in Function]
Query or set the internal variable that specifies the options used for saving the workspace
data if Octave aborts. The value of octave_core_file_options should follow the same
format as the options for the save function. The default value is Octave’s binary format.

See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_limit.

146 GNU Octave

val = octave_core_file_limit () [Built-in Function]

old_val = octave_core_file_limit (new_val) [Built-in Function)]
Query or set the internal variable that specifies the maximum amount of memory (in kilo-
bytes) of the top-level workspace that Octave will attempt to save when writing data to
the crash dump file (the name of the file is specified by octave_core_file_name). If oc-
tave_core_file_options flags specify a binary format, then octave_core_file_limit will be ap-
proximately the maximum size of the file. If a text file format is used, then the file could be
much larger than the limit. The default value is -1 (unlimited)

See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.

val = octave_core_file_name () [Built-in Function]

old_val = octave_core_file_name (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used for saving data from
the top-level workspace if Octave aborts. The default value is "octave-core"

See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
14.1.4 Rational Approximations

s = rat (x, tol) [Function File]

[n, d] rat (x, tol) [Function File]
Find a rational approximation to x within tolerance defined by tol using a continued fraction
expansion. E.g,

rat(pi) = 3 + 1/(7 + 1/16) = 355/113

rat(e) = 3+ 1/(-4 + 1/(2 + 1/(6 + 1/(-2 + 1/(-T)))))
= 1457/536

Called with two arguments returns the numerator and denominator separately as two matri-
ces.

See also: rats.

rats (x, len) [Built-in Function]
Convert x into a rational approximation represented as a string. You can convert the string
back into a matrix as follows:

rats(hilb(4));
str2num(r)

r
X

The optional second argument defines the maximum length of the string representing the
elements of x. By default len is 9.

See also: format, rat.

14.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the functionality of the C program-
ming language’s standard I/O library. The argument lists for some of the input functions are
slightly different, however, because Octave has no way of passing arguments by reference.

In the following, file refers to a file name and fid refers to an integer file number, as returned
by fopen.

There are three files that are always available. Although these files can be accessed using
their corresponding numeric file ids, you should always use the symbolic names given in the
table below, since it will make your programs easier to understand.

Chapter 14: Input and Output 147

stdin () [Built-in Function]
Return the numeric value corresponding to the standard input stream. When Octave is used
interactively, this is filtered through the command line editing functions.

See also: stdout, stderr.

stdout () [Built-in Function]
Return the numeric value corresponding to the standard output stream. Data written to the
standard output is normally filtered through the pager.

See also: stdin, stderr.

stderr () [Built-in Function]
Return the numeric value corresponding to the standard error stream. Even if paging is
turned on, the standard error is not sent to the pager. It is useful for error messages and
prompts.

See also: stdin, stdout.

14.2.1 Opening and Closing Files

When reading data from a file it must be opened for reading first, and likewise when writing to
a file. The fopen function returns a pointer to an open file that is ready to be read or written.
Once all data has been read from or written to the opened file it should be closed. The fclose
function does this. The following code illustrates the basic pattern for writing to a file, but a
very similar pattern is used when reading a file.

filename = "myfile.txt";

fid = fopen (filename, "w");
Do the actual I/0 here...
fclose (fid);

[fid, msg] = fopen (name, mode, arch) [Built-in Function]
fid_list = fopen ("all") [Built-in Function)]
[file, mode, arch] = fopen (fid) [Built-in Function]

The first form of the fopen function opens the named file with the specified mode (read-write,
read-only, etc.) and architecture interpretation (IEEE big endian, IEEE little endian, etc.),
and returns an integer value that may be used to refer to the file later. If an error occurs, fid
is set to —1 and msg contains the corresponding system error message. The mode is a one

or two character string that specifies whether the file is to be opened for reading, writing, or
both.

The second form of the fopen function returns a vector of file ids corresponding to all the
currently open files, excluding the stdin, stdout, and stderr streams.

The third form of the fopen function returns information about the open file given its file id.
For example,

myfile = fopen ("splat.dat", "r", "ieee-le");
opens the file ‘splat.dat’ for reading. If necessary, binary numeric values will be read

assuming they are stored in IEEE format with the least significant bit first, and then converted
to the native representation.

Opening a file that is already open simply opens it again and returns a separate file id. It
is not an error to open a file several times, though writing to the same file through several
different file ids may produce unexpected results.

The possible values ‘mode’ may have are

[

T Open a file for reading.

148 GNU Octave

‘w’ Open a file for writing. The previous contents are discarded.

‘a’ Open or create a file for writing at the end of the file.

‘r+’ Open an existing file for reading and writing.

‘w+’ Open a file for reading or writing. The previous contents are discarded.

‘at’ Open or create a file for reading or writing at the end of the file.

Append a "t" to the mode string to open the file in text mode or a "b" to open in binary mode.
On Windows and Macintosh systems, text mode reading and writing automatically converts
linefeeds to the appropriate line end character for the system (carriage-return linefeed on
Windows, carriage-return on Macintosh). The default if no mode is specified is binary mode.

Additionally, you may append a "z" to the mode string to open a gzipped file for reading or
writing. For this to be successful, you must also open the file in binary mode.

The parameter arch is a string specifying the default data format for the file. Valid values
for arch are:

‘native’ The format of the current machine (this is the default).

‘ieee-be’ IEEE big endian format.

‘ieee-1le’ IEEE little endian format.

‘vaxd’ VAX D floating format.

‘vaxg’ VAX G floating format.

‘cray’ Cray floating format.

however, conversions are currently only supported for ‘native’ ‘ieee-be’, and ‘ieee-le’
formats.

See also: fclose, fread, fseek.

fclose (fid) [Built-in Function]
Closes the specified file. If successful, fclose returns 0, otherwise, it returns -1.

See also: fopen, fseek, ftell.

14.2.2 Simple Output

Once a file has been opened for writing a string can be written to the file using the fputs
function. The following example shows how to write the string ‘Free Software is needed for
Free Science’ to the file ‘free.txt’.

filename = "free.txt";

fid = fopen (filename, "w");

fputs (fid, "Free Software is needed for Free Science");
fclose (fid);

fputs (fid, string) [Built-in Function]
Write a string to a file with no formatt